• 제목/요약/키워드: Fuzzy Classification

Search Result 572, Processing Time 0.111 seconds

Data Classification Using the Robbins-Monro Stochastic Approximation Algorithm (로빈스-몬로 확률 근사 알고리즘을 이용한 데이터 분류)

  • Lee, Jae-Kook;Ko, Chun-Taek;Choi, Won-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.624-627
    • /
    • 2005
  • This paper presents a new data classification method using the Robbins Monro stochastic approximation algorithm k-nearest neighbor and distribution analysis. To cluster the data set, we decide the centroid of the test data set using k-nearest neighbor algorithm and the local area of data set. To decide each class of the data, the Robbins Monro stochastic approximation algorithm is applied to the decided local area of the data set. To evaluate the performance, the proposed classification method is compared to the conventional fuzzy c-mean method and k-nn algorithm. The simulation results show that the proposed method is more accurate than fuzzy c-mean method, k-nn algorithm and discriminant analysis algorithm.

  • PDF

Classification of Arrhythmia Based on Discrete Wavelet Transform and Rough Set Theory

  • Kim, M.J.;J.-S. Han;Park, K.H.;W.C. Bang;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.28.5-28
    • /
    • 2001
  • This paper investigates a classification method of the electrocardiogram (ECG) into different disease categories. The features for the classification of the ECG are the coefficients of the discrete wavelet transform (DWT) of ECG signals. The coefficients are calculated with Haar wavelet, and after DWT we can get 64 coefficients. Each coefficient has morphological information and they may be good features when conventional time-domain features are not available. Since all of them are not meaningful, it is needed to reduce the size of meaningful coefficients set. The distributions of each coefficient can be the rules to classify ECG signal. The optimally reduced feature set is obtained by fuzzy c-means algorithm and rough set theory. First, the each coefficient is clustered by fuzzy c-means algorithm and the clustered ...

  • PDF

An Application of Artificial Intelligence System for Accuracy Improvement in Classification of Remotely Sensed Images (원격탐사 영상의 분류정확도 향상을 위한 인공지능형 시스템의 적용)

  • 양인태;한성만;박재국
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.1
    • /
    • pp.21-31
    • /
    • 2002
  • This study applied each Neural Networks theory and Fuzzy Set theory to improve accuracy in remotely sensed images. Remotely sensed data have been used to map land cover. The accuracy is dependent on a range of factors related to the data set and methods used. Thus, the accuracy of maps derived from conventional supervised image classification techniques is a function of factors related to the training, allocation, and testing stages of the classification. Conventional image classification techniques assume that all the pixels within the image are pure. That is, that they represent an area of homogeneous cover of a single land-cover class. But, this assumption is often untenable with pixels of mixed land-cover composition abundant in an image. Mixed pixels are a major problem in land-cover mapping applications. For each pixel, the strengths of class membership derived in the classification may be related to its land-cover composition. Fuzzy classification techniques are the concept of a pixel having a degree of membership to all classes is fundamental to fuzzy-sets-based techniques. A major problem with the fuzzy-sets and probabilistic methods is that they are slow and computational demanding. For analyzing large data sets and rapid processing, alterative techniques are required. One particularly attractive approach is the use of artificial neural networks. These are non-parametric techniques which have been shown to generally be capable of classifying data as or more accurately than conventional classifiers. An artificial neural networks, once trained, may classify data extremely rapidly as the classification process may be reduced to the solution of a large number of extremely simple calculations which may be performed in parallel.

Identification of Plastic Wastes by Using Fuzzy Radial Basis Function Neural Networks Classifier with Conditional Fuzzy C-Means Clustering

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1872-1879
    • /
    • 2016
  • The techniques to recycle and reuse plastics attract public attention. These public attraction and needs result in improving the recycling technique. However, the identification technique for black plastic wastes still have big problem that the spectrum extracted from near infrared radiation spectroscopy is not clear and is contaminated by noise. To overcome this problem, we apply Raman spectroscopy to extract a clear spectrum of plastic material. In addition, to improve the classification ability of fuzzy Radial Basis Function Neural Networks, we apply supervised learning based clustering method instead of unsupervised clustering method. The conditional fuzzy C-Means clustering method, which is a kind of supervised learning based clustering algorithms, is used to determine the location of radial basis functions. The conditional fuzzy C-Means clustering analyzes the data distribution over input space under the supervision of auxiliary information. The auxiliary information is defined by using k Nearest Neighbor approach.

Finding Fuzzy Rules for IRIS by Neural Network with Weighted Fuzzy Membership Function

  • Lim, Joon Shik
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.2
    • /
    • pp.211-216
    • /
    • 2004
  • Fuzzy neural networks have been successfully applied to analyze/generate predictive rules for medical or diagnostic data. However, most approaches proposed so far have not considered the weights for the membership functions much. This paper presents a neural network with weighted fuzzy membership functions. In our approach, the membership functions can capture the concentrated and essential information that affects the classification of the input patterns. To verify the performance of the proposed model, well-known Iris data set is performed. According to the results, the weighted membership functions enhance the prediction accuracy. The architecture of the proposed neural network with weighted fuzzy membership functions and the details of experimental results for the data set is discussed in this paper.

FUZZY CHOICE IN DESIGN OF THE COMPLEX SYSTEMS.

  • Belov, Y.;Matsuoka, K.;Shafranskiy, S.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1301-1304
    • /
    • 1993
  • The base of proposed decomposing approach is multilevel process of agregation (simplificative transformation) of the description of the project structures. The new classification of fuzzy choice operators is suggested to obtain the decomposing correlations.

  • PDF

An Empirical Study on the Land Cover Classification Method using IKONOS Image (IKONOS 영상의 토지피복분류 방법에 관한 실증 연구)

  • Sakong, Hosang;Im, Jungho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.3
    • /
    • pp.107-116
    • /
    • 2003
  • This study investigated how appropriate the classification methods based on conventional spectral characteristics are for high resolution imagery. A supervised classification mixing parametric and non-parametric rules, a method in which fuzzy theory is applied to such classification, and an unsupervised method were performed and compared to each other for accuracy. In addition, comparing the result screen-digitized through interpretation to the classification result using spectral characteristics, this study analyzed the conformity of both methods. Although the supervised classification to which fuzzy theory was applied showed the best performance, the application of conventional classification techniques to high resolution imagery had some limitations due to there being too much information unnecessary to classification, shadows, and a lack of spectral information. Consequently, more advanced techniques including integration with other advanced remote sensing technologies, such as lidar, and application of filtering or template techniques, are required to classify land cover/use or to extract useful information from high resolution imagery.

  • PDF

Fuzzy Learning Method Using Genetic Algorithms

  • Choi, Sangho;Cho, Kyung-Dal;Park, Sa-Joon;Lee, Malrey;Kim, Kitae
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.6
    • /
    • pp.841-850
    • /
    • 2004
  • This paper proposes a GA and GDM-based method for removing unnecessary rules and generating relevant rules from the fuzzy rules corresponding to several fuzzy partitions. The aim of proposed method is to find a minimum set of fuzzy rules that can correctly classify all the training patterns. When the fine fuzzy partition is used with conventional methods, the number of fuzzy rules has been enormous and the performance of fuzzy inference system became low. This paper presents the application of GA as a means of finding optimal solutions over fuzzy partitions. In each rule, the antecedent part is made up the membership functions of a fuzzy set, and the consequent part is made up of a real number. The membership functions and the number of fuzzy inference rules are tuned by means of the GA, while the real numbers in the consequent parts of the rules are tuned by means of the gradient descent method. It is shown that the proposed method has improved than the performance of conventional method in formulating and solving a combinatorial optimization problem that has two objectives: to maximize the number of correctly classified patterns and to minimize the number of fuzzy rules.

  • PDF

Fuaay Decision Tree Induction to Obliquely Partitioning a Feature Space (특징공간을 사선 분할하는 퍼지 결정트리 유도)

  • Lee, Woo-Hang;Lee, Keon-Myung
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.3
    • /
    • pp.156-166
    • /
    • 2002
  • Decision tree induction is a kind of useful machine learning approach for extracting classification rules from a set of feature-based examples. According to the partitioning style of the feature space, decision trees are categorized into univariate decision trees and multivariate decision trees. Due to observation error, uncertainty, subjective judgment, and so on, real-world data are prone to contain some errors in their feature values. For the purpose of making decision trees robust against such errors, there have been various trials to incorporate fuzzy techniques into decision tree construction. Several researches hove been done on incorporating fuzzy techniques into univariate decision trees. However, for multivariate decision trees, few research has been done in the line of such study. This paper proposes a fuzzy decision tree induction method that builds fuzzy multivariate decision trees named fuzzy oblique decision trees, To show the effectiveness of the proposed method, it also presents some experimental results.

A Study on the Application of Fuzzy membership function in GIS Spatial Analysis - In the case of Evaluation of Waste Landfill - (GIS 공간분석에 있어 Fuzzy 함수의 적용에 관한 연구 -쓰레기 매립장 적지분석을 중심으로-)

  • Lim, Seung-Hyeon;Hwang, Ju-Tae;Park, Young-Ki;Lee, Jang-Choon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.43-49
    • /
    • 2007
  • In this study, a GIS spatial analysis method adopted fuzzy concept was introduced and land suitability analysis of waste landfill were conducted through this method. Previous studies conducted site evaluation and land suitability analysis by appling spatial overlay of conventional GIS that based on the boolean logic of crisp set. However these method can not consider the uncertainty of spatial data and the incongruity of data classification criteria, because these method handle spatial data based on the boolean logic of crisp set. As not provided trustable analysis result, conventional GIS spatial overlay method lacks opportunity for expanding use in reality. This study selected waste landfill as facility for analysis and applied fuzzy spatial analysis method as an objective approach. In the concrete contents of study, a series process with regard to the definition procedure of membership function for continuous data and the fuzzy input value generation of spatial data for fuzzy analysis is established. As a result, in this study we proposed a method that derive parameters for deciding the membership function of spatial data by considering the criterion of data classification and factor selection for land suitability analysis of waste landfill.

  • PDF