• 제목/요약/키워드: Fuzzy C-Means Clustering

검색결과 310건 처리시간 0.024초

퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용 (Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application)

  • 박건준;이동윤
    • 한국산학기술학회논문지
    • /
    • 제14권1호
    • /
    • pp.378-384
    • /
    • 2013
  • 본 논문에서는 FCM 클러스터링 알고리즘을 기반으로 하는 퍼지뉴럴네트워크를 제안한다. 일반적으로, 퍼지규칙을 생성할 때 차원이 증가하면 퍼지 규칙의 수가 기하급수적으로 증가하는 문제를 가지고 있다. 이를 해결하기 위해, 제안된 네트워크의 퍼지 규칙은 FCM 클러스터링 알고리즘을 이용하여 입력 공간을 분산 형태로 분할함으로써 생성한다. 퍼지 규칙의 전반부 파라미터는 FCM 클러스터링 알고리즘에 의한 소속행렬로 결정된다. 퍼지 규칙의 후반부는 다항식 함수의 형태로 표현되며, 퍼지뉴럴네트워크의 학습은 뉴런의 연결을 조절함으로써 실현되고, 오류 역전파 알고리즘에 의해 행해진다. 마지막으로, 제안된 네트워크는 비선형 공정으로의 적용을 통해 성능을 평가한다.

디자인 패턴을 적용한 위성영상처리를 위한 군집화 분류시스템의 설계 (A Design of Clustering Classification Systems using Satellite Remote Sensing Images Based on Design Patterns)

  • 김동연;김진일
    • 정보처리학회논문지B
    • /
    • 제9B권3호
    • /
    • pp.319-326
    • /
    • 2002
  • 본 논문에서는 위성영상을 처리하기 위한 무감독분류 기법인 군집분류 시스템을 설계하고 구현하였다. 구현된 시스템은 새로운 위성영상 포맷과 군집분류 기법의 지원이 용이하고, 확장성 있는 시스템의 설계를 위하여 팩토리 패턴과 전략적 패턴 등 다양한 디자인 패턴을 적용하였다. 군집분류 시스템은 순차군집분류 기법, K-Means 군집분류 기법, ISODATA 기법, Fuzzy C-Means군집분류 기법을 설계, 구현하였으며 Landsat TM 위성영상을 분류기의 입력영상으로 실험하였다. 그 결과 군집분류 기법은 사전지식이 없는 위성영상의 분류를 위한 표본영역의 추출작업과 위성영상의 실시간 분류에 효과적인 사용이 가능함을 보였으며, 재사용성 및 확장성이 우수한 시스템을 개발하였다.

빅데이터에서 개선된 TI-FCM 클러스터링 알고리즘 (Improved TI-FCM Clustering Algorithm in Big Data)

  • 이광규
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.419-424
    • /
    • 2019
  • FCM 알고리즘은 반복 최적화 기법을 통해 최적해를 찾는다. 특히, 클러스터링 초기 중심과 잡음의 위치, 몰려있는 밀도의 위치, 개수에 따라 실행시간 차이가 난다. 하지만 이 방법은 중심점을 점차 갱신해 나가는 방법으로 초기 클러스터 중심이 한 쪽으로 치우치게 되고 클러스터링 결과의 편차가 심해 클러스터링 대푯값의 신뢰도가 떨어진다. 따라서 본 논문에서는 삼각부등식을 이용하여 클러스터 간 거리를 최대한 멀어지게 하여 클러스터 중심 밀도를 결정하는 TI-FCM(Triangular Inequality-Fuzzy C-Means:삼각부등식-FCM)클러스터링 알고리즘을 제안한다. 제안된 방법은 대용량의 빅데이터에서도 FCM에 비해 실제 클러스터에 수렴하는 효과적인 방법이고 실험을 통해 기존 FCM보다 실행시간이 감소됨을 보였다.

커널 기반의 Possibilistic C-Means 클러스터링 알고리즘 (A Kernel based Possibilistic C-Means Clustering Algorithm)

  • 최길수;최병인;이정훈
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 추계학술대회 학술발표 논문집 제14권 제2호
    • /
    • pp.158-161
    • /
    • 2004
  • Fuzzy Kernel C-Means(FKCM) 알고리즘은 커널 함수를 통하여 구형의 데이터뿐만 아니라 Fuzzy C-Means(FCM)에서는 분류하기 힘든 복잡한 형태의 분포를 갖는 데이터를 분류할 수 있다. 하지만 FCM과 같이 노이즈에 대해서는 민감한 성질을 가진다 이처럼 노이즈(noise)에 민감한 성질을 보완하기 위해서 본 논문에서는 Possibllistic C-Means 알고리즘에 커널 함수를 적용하였다. 본 논문에서 제안된 Kernel Possibilistic C-Means(KPCM) 알고리즘은 일반적인 데이터에 대해 FKCM과 같은 성능의 클러스터링 수행이 가능하며 노이즈가 있는 데이터에 대해서는 FKCM보다 더욱 정확한 클러스터링을 수행할 수 있다.

  • PDF

FCM 기반 퍼지 뉴럴 네트워크의 진화론적 최적화 (Genetic Optimization of Fuzzy C-Means Clustering-Based Fuzzy Neural Networks)

  • 최정내;김현기;오성권
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.466-472
    • /
    • 2008
  • The paper concerns Fuzzy C-Means clustering based fuzzy neural networks (FCM-FNN) and the optimization of the network is carried out by means of hierarchal fair competition-based parallel genetic algorithm (HFCPGA). FCM-FNN is the extended architecture of Radial Basis Function Neural Network (RBFNN). FCM algorithm is used to determine centers and widths of RBFs. In the proposed network, the membership functions of the premise part of fuzzy rules do not assume any explicit functional forms such as Gaussian, ellipsoidal, triangular, etc., so its resulting fitness values directly rely on the computation of the relevant distance between data points by means of FCM. Also, as the consequent part of fuzzy rules extracted by the FCM-FNN model, the order of four types of polynomials can be considered such as constant, linear, quadratic and modified quadratic. Since the performance of FCM-FNN is affected by some parameters of FCM-FNN such as a specific subset of input variables, fuzzification coefficient of FCM, the number of rules and the order of polynomials of consequent part of fuzzy rule, we need the structural as well as parametric optimization of the network. In this study, the HFCPGA which is a kind of multipopulation-based parallel genetic algorithms(PGA) is exploited to carry out the structural optimization of FCM-FNN. Moreover the HFCPGA is taken into consideration to avoid a premature convergence related to the optimization problems. The proposed model is demonstrated with the use of two representative numerical examples.

GA기반 TSK 퍼지 분류기의 설계 및 응용 (The Design of GA-based TSK Fuzzy Classifier and Its application)

  • 곽근창;김승석;유정웅;전명근
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

퍼지 C-Means 클러스터링을 이용한 요부 초음파 영상의 양자화 (The Quantization of Lumbar Ultrasonographic Images using Fuzzy C-Means Clustering)

  • 홍동진;김광백
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제47차 동계학술대회논문집 21권1호
    • /
    • pp.301-302
    • /
    • 2013
  • 본 논문에서는 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각 클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에서 나타낸다. 본 논문에서 제안하는 기법을 적용한 요부 초음파 영상과 일반적으로 자주 이용되는 히스토그램 기반 양자화 기법을 적용한 요부 초음파 영상을 비교하였을 때, 본 논문에서 제안하는 퍼지 C-Means 클러스터링을 이용한 양자화를 적용한 영상이 근육 내의 지방을 분석하는데 효과적인 것을 확인할 수 있었다.

  • PDF

Fuzzy Clustering 기반의 화재 상황 인식 모델 (Recognition of Fire Levels based on Fuzzy Inference System using by FCM)

  • 송재원;안태기;김문현;홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제11권1호
    • /
    • pp.125-132
    • /
    • 2011
  • 기존의 화재 감시 시스템은 보통 연기, CO 혹은 온도나 온도의 변화량을 가지고 화재여부를 판단하였다. 대부분 각각의 센서에서 측정된 값을 미리 설정한 값과 비교하여 기준을 넘었을 경우에 화재라고 결정한다. 그러나 화재 가능성이 있는 상황도 정확히 예측하는 것이 화재를 예방하기 위해 요구된다. 본 연구에서는 여러 인자들 간의 조합에 의한 규칙을 생성하고, 불명확한 데이터 처리가 가능한 퍼지추론을 사용하여 화재상황을 인식하는 방식을 제안한다. 또한 퍼지추론 방식에서 지식의 일반화, 형식화의 문제점을 해결하기 위해, 화재의 특정 패턴들의 특징을 찾아서 분석하고 규칙베이스를 구축함으로써 시스템의 성능을 더욱 향상 시킨다. 화재의 레벨을 3단계(정상, 주의, 위험)로 나누고, 각 단계별로 훈련데이터를 FCM(fuzzy C-means clustering)에 의해 규칙화 하여 추론하는 시스템을 제안한다. 제안된 방식을 UCI의 삼림화재 데이터를 이용하여 성능을 평가한다.

하이브리드 분류기법을 이용한 위성영상의 분류에 관한 연구 (A Study on the Classification for Satellite Images using Hybrid Method)

  • 전영준;김진일
    • 정보처리학회논문지B
    • /
    • 제11B권2호
    • /
    • pp.159-168
    • /
    • 2004
  • 본 논문에서는 위성영상의 분류에 대한 성능 개선을 위하여 ISODATA 클러스터링, 퍼지 C-Means 알고리즘, 베이시안 최대우도 분류기법을 통합한 하이브리드 분류기법을 제안하였다. 본 연구에서는 분석자에 의하여 분류항목별 학습 데이터를 선정한 후 이를 ISODATA 클러스터링을 이용하여 각각의 분류항목별로 분광특징에 따라 학습 데이터를 세분화하여 새로운 학습 데이터를 선정하였다. 새롭게 선정된 학습 데이터를 이용하여 퍼지 C-Means 알고리즘을 이용하여 분류를 수행하고 그 결과를 베이시안 최대우도 분류기의 사전확률로 적용하여 분류를 수행하였다. 그 결과 분석자가 선정한 분류항목별 훈련데이터의 분광적인 특징에 관계없이 분류를 수행할 수 있었으며 위성영상의 분류의 성능을 개선할 수 있었다. 제안된 기법은 Landsat TM 위성영상을 이용하여 그 적용성을 시험하였다.

Polynomial Fuzzy Radial Basis Function Neural Network Classifiers Realized with the Aid of Boundary Area Decision

  • Roh, Seok-Beom;Oh, Sung-Kwun
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.2098-2106
    • /
    • 2014
  • In the area of clustering, there are numerous approaches to construct clusters in the input space. For regression problem, when forming clusters being a part of the overall model, the relationships between the input space and the output space are essential and have to be taken into consideration. Conditional Fuzzy C-Means (c-FCM) clustering offers an opportunity to analyze the structure in the input space with the mechanism of supervision implied by the distribution of data present in the output space. However, like other clustering methods, c-FCM focuses on the distribution of the data. In this paper, we introduce a new method, which by making use of the ambiguity index focuses on the boundaries of the clusters whose determination is essential to the quality of the ensuing classification procedures. The introduced design is illustrated with the aid of numeric examples that provide a detailed insight into the performance of the fuzzy classifiers and quantify several essentials design aspects.