• Title/Summary/Keyword: Fuzzy C-Means 클러스터링

Search Result 152, Processing Time 0.018 seconds

A Non-linear Variant of Global Clustering Using Kernel Methods (커널을 이용한 전역 클러스터링의 비선형화)

  • Heo, Gyeong-Yong;Kim, Seong-Hoon;Woo, Young-Woon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.11-18
    • /
    • 2010
  • Fuzzy c-means (FCM) is a simple but efficient clustering algorithm using the concept of a fuzzy set that has been proved to be useful in many areas. There are, however, several well known problems with FCM, such as sensitivity to initialization, sensitivity to outliers, and limitation to convex clusters. In this paper, global fuzzy c-means (G-FCM) and kernel fuzzy c-means (K-FCM) are combined to form a non-linear variant of G-FCM, called kernel global fuzzy c-means (KG-FCM). G-FCM is a variant of FCM that uses an incremental seed selection method and is effective in alleviating sensitivity to initialization. There are several approaches to reduce the influence of noise and accommodate non-convex clusters, and K-FCM is one of them. K-FCM is used in this paper because it can easily be extended with different kernels. By combining G-FCM and K-FCM, KG-FCM can resolve the shortcomings mentioned above. The usefulness of the proposed method is demonstrated by experiments using artificial and real world data sets.

Noise resistant density based Fuzzy C-means Clustering Algorithm (노이즈에 강한 밀도를 이용한 Fuzzy C-means 클러스터링 알고리즘)

  • Go, Jeong-Won;Choe, Byeong-In;Lee, Jeong-Hun
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.11a
    • /
    • pp.211-214
    • /
    • 2006
  • Fuzzy C-Means(FCM) 알고리즘은 probabilitic 멤버쉽을 사용하는 클러스터링 방법으로서 널리 쓰이고 있다. 하지만 이 방법은 노이즈에 대하여 민감한 성질을 가진다는 단점이 있다. 따라서 본 논문에서는 이러한 노이즈에 민감한 성질을 보완하기 위해서 데이터의 밀도추정을 이용하여 새로운 FCM 알고리즘을 제안한다. 본 논문에서 제안된 알고리즘은 FCM과 비슷한 성능의 클러스터링 수행이 가능하며, 노이즈가 포함된 데이터에서는 FCM보다 더 나은 성능을 보여준다.

  • PDF

A Novel Approach towards use of Adaptive Multiple Kernels in Interval Type-2 Possibilistic Fuzzy C-Means (적응적 Multiple Kernels을 이용한 Interval Type-2 Possibilistic Fuzzy C-Means 방법)

  • Joo, Won-Hee;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.5
    • /
    • pp.529-535
    • /
    • 2014
  • In this paper, we propose a hybrid approach towards multiple kernels interval type-2 possibilistic fuzzy C-means(PFCM) based on interval type-2 possibilistic fuzzy c-means(IT2PFCM) and possibilistic fuzzy c-means using multiple kernels( PFCM-MK). In case of noisy data or overlapping cluster prototypes, fuzzy C-means gives poor performance in comparison to possibilistic fuzzy C-means(PFCM). Moreover, to address the uncertainty associated with fuzzifier parameter m, interval type-2 possibilistic fuzzy C-means(PFCM) is used. Most of the practical data available are complex and non-linearly separable. In such cases using Gaussian kernels proves helpful. Therefore, in order to overcome all these issues, we have integrated multiple kernels possibilistic fuzzy C-means(PFCM) into interval type-2 possibilistic fuzzy C-means(IT2PFCM) and propose the idea of multiple kernels based interval type-2 possibilistic fuzzy C-means(IT2PFCM-MK).

A Kernel based Possibilistic C-Means Clustering Algorithm (커널 기반의 Possibilistic C-Means 클러스터링 알고리즘)

  • 최길수;최병인;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.158-161
    • /
    • 2004
  • Fuzzy Kernel C-Means(FKCM) 알고리즘은 커널 함수를 통하여 구형의 데이터뿐만 아니라 Fuzzy C-Means(FCM)에서는 분류하기 힘든 복잡한 형태의 분포를 갖는 데이터를 분류할 수 있다. 하지만 FCM과 같이 노이즈에 대해서는 민감한 성질을 가진다 이처럼 노이즈(noise)에 민감한 성질을 보완하기 위해서 본 논문에서는 Possibllistic C-Means 알고리즘에 커널 함수를 적용하였다. 본 논문에서 제안된 Kernel Possibilistic C-Means(KPCM) 알고리즘은 일반적인 데이터에 대해 FKCM과 같은 성능의 클러스터링 수행이 가능하며 노이즈가 있는 데이터에 대해서는 FKCM보다 더욱 정확한 클러스터링을 수행할 수 있다.

  • PDF

The Quantization of Lumbar Ultrasonographic Images using Fuzzy C-Means Clustering (퍼지 C-Means 클러스터링을 이용한 요부 초음파 영상의 양자화)

  • Hong, Dong-Jin;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.01a
    • /
    • pp.301-302
    • /
    • 2013
  • 본 논문에서는 초음파 영상에서 퍼지 C-Means 클러스터링을 이용한 양자화 기법을 제안한다. 제안된 방법은 초음파 영상에서 나타난 명암도를 이용하여 n개의 그룹으로 클러스터링한다. 그리고 각 클러스터의 중심 값을 기준으로 정렬한 뒤, 각 그룹에 지정된 색상을 요부 초음파 영상에서 나타낸다. 본 논문에서 제안하는 기법을 적용한 요부 초음파 영상과 일반적으로 자주 이용되는 히스토그램 기반 양자화 기법을 적용한 요부 초음파 영상을 비교하였을 때, 본 논문에서 제안하는 퍼지 C-Means 클러스터링을 이용한 양자화를 적용한 영상이 근육 내의 지방을 분석하는데 효과적인 것을 확인할 수 있었다.

  • PDF

Extension of the Possibilistic Fuzzy C-Means Clustering Algorithm (Possibilistic Fuzzy C-Means 클러스터링 알고리즘의 확장)

  • Heo, Gyeong-Yong;U, Yeong-Un;Kim, Gwang-Baek
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.423-426
    • /
    • 2007
  • 클러스터링은 주어진 데이터 포인트들을 주어진 개수의 그룹으로 나누는 비지도 학습의 한 방법이다. 클러스터링의 방법 중 하나로 널리 알려진 퍼지 클러스터링은 하나의 포인트가 모든 클러스터에 서로 다른 정도로 소속될 수 있도록 함으로써 각 포인트가 하나의 클러스터에만 속할 수 있도록 하는 K-means와 같은 방법에 비해 자연스러운 클러스터 형태의 유추가 가능하고, 잡음에 강한 장점이 있다. 이 논문에서는 기존의 퍼지 클러스터링 방법 중 소속도(membership)와 전형성(typicality)을 동시에 계산해 낼 수 있는 Possibilistic Fuzzy C-Means (PFCM) 방법에 Gath-Geva (GG)의 방법 을 적용하여 PFCM을 확장한다. 제안한 방법은 PFCM의 장점을 그대로 가지면서도, GG의 거리 척도에 의해 클러스터들 사이의 경계를 강조함으로써 분류 목적에 적합한 소속도를 계산할 수 있으며, 전형성은 가우스 형태의 분포에서 생성된 포인트들의 분포 함수를 정확하게 모사함으로써 확률 밀도 추정의 방법으로도 사용될 수 있다. 또한 GG 방법은 Gustafson-Kessel 방법과 달리 클러스터에 포함된 포인트의 개수가 확연히 차이 나는 경우에도 정확한 결과를 얻을 수 있다는 사실을 실험 결과를 통해 확인할 수 있었다.

  • PDF

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation (영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘)

  • Truong, Tung X.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

A Density Estimation based Fuzzy C-means Algorithm for Image Segmentation (영상분할을 위한 밀도추정 바탕의 Fuzzy C-means 알고리즘)

  • Ko, Jeong-Won;Choi, Byung-In;Rhee, Frank Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.196-201
    • /
    • 2007
  • The Fuzzy E-means (FCM) algorithm is a widely used clustering method that incorporates probabilitic memberships. Due to these memberships, it can be sensitive to noise data. In this paper, we propose a new fuzzy C-means clustering algorithm by incorporating the Parzen Window method to include density information of the data. Several experimental results show that our proposed density-based FCM algorithm outperforms conventional FCM especially for data with noise and it is not sensitive to initial cluster centers.

A Fast K-means and Fuzzy-c-means Algorithms using Adaptively Initialization (적응적인 초기치 설정을 이용한 Fast K-means 및 Frizzy-c-means 알고리즘)

  • 강지혜;김성수
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.4
    • /
    • pp.516-524
    • /
    • 2004
  • In this paper, the initial value problem in clustering using K-means or Fuzzy-c-means is considered to reduce the number of iterations. Conventionally the initial values in clustering using K-means or Fuzzy-c-means are chosen randomly, which sometimes brings the results that the process of clustering converges to undesired center points. The choice of intial value has been one of the well-known subjects to be solved. The system of clustering using K-means or Fuzzy-c-means is sensitive to the choice of intial values. As an approach to the problem, the uniform partitioning method is employed to extract the optimal initial point for each clustering of data. Experimental results are presented to demonstrate the superiority of the proposed method, which reduces the number of iterations for the central points of clustering groups.

Analysis of Saccharomyces Cell Cycle Expression Data using Bayesian Validation of Fuzzy Clustering (퍼지 클러스터링의 베이지안 검증 방법을 이용한 발아효모 세포주기 발현 데이타의 분석)

  • Yoo Si-Ho;Won Hong-Hee;Cho Sung-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.12
    • /
    • pp.1591-1601
    • /
    • 2004
  • Clustering, a technique for the analysis of the genes, organizes the patterns into groups by the similarity of the dataset and has been used for identifying the functions of the genes in the cluster or analyzing the functions of unknown gones. Since the genes usually belong to multiple functional families, fuzzy clustering methods are more appropriate than the conventional hard clustering methods which assign a sample to a group. In this paper, a Bayesian validation method is proposed to evaluate the fuzzy partitions effectively. Bayesian validation method is a probability-based approach, selecting a fuzzy partition with the largest posterior probability given the dataset. At first, the proposed Bayesian validation method is compared to the 4 representative conventional fuzzy cluster validity measures in 4 well-known datasets where foray c-means algorithm is used. Then, we have analyzed the results of Saccharomyces cell cycle expression data evaluated by the proposed method.