• Title/Summary/Keyword: Fuzzy C-Means(FCM)

Search Result 232, Processing Time 0.029 seconds

Improved FCM Clustering Image Segmentation (개선된 FCM 클러스터링 영상 분할)

  • Lee, Kwang-Kyug
    • Journal of IKEEE
    • /
    • v.24 no.1
    • /
    • pp.127-131
    • /
    • 2020
  • Fuzzy C-Means(FCM) algorithm is frequently used as a representative image segmentation method using clustering. FCM divides the image space into cluster regions with similar pixel values, which requires a lot of segmentation time. In particular, the processing speed problem for analyzing various patterns of the current users of the web is more important. To solve this speed problem, this paper proposes an improved FCM (Improved FCM : IFCM) algorithm for segmenting the image into the Otsu threshold and FCM. In the proposed method, the threshold that maximizes the variance between classes of Otsu is determined, applied to the FCM, and the image is segmented. Experiments show that IFCM improves performance by shortening image segmentation time compared to conventional FCM.

Design of Type-2 FCM-based Fuzzy Inference Systems and Its Optimization (Type-2 FCM 기반 퍼지 추론 시스템의 설계 및 최적화)

  • Park, Keon-Jun;Kim, Yong-Kab;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.11
    • /
    • pp.2157-2164
    • /
    • 2011
  • In this paper, we introduce a new category of fuzzy inference system based on Type-2 fuzzy c-means clustering algorithm (T2FCM-based FIS). The premise part of the rules of the proposed model is realized with the aid of the scatter partition of input space generated by Type-2 FCM clustering algorithm. The number of the partition of input space is composed of the number of clusters and the individual partitioned spaces describe the fuzzy rules. Due to these characteristics, we can alleviate the problem of the curse of dimensionality. The consequence part of the rule is represented by polynomial functions with interval sets. To determine the structure and estimate the values of the parameters of Type-2 FCM-based FIS we consider the successive tuning method with generation-based evolution by means of real-coded genetic algorithms. The proposed model is evaluated with the use of numerical experimentation.

A Kernel based Possibilistic Approach for Clustering and Image Segmentation (클러스터링 및 영상 분할을 위한 커널 기반의 Possibilistic 접근 방법)

  • Choi, Kil-Soo;Choi, Byung-In;Rhee, Chung-Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.7
    • /
    • pp.889-894
    • /
    • 2004
  • The fuzzy kernel c-means (FKCM) algorithm, which uses a kernel function, can obtain more desirable clustering results than fuzzy c-means (FCM) for not only spherical data but also non-spherical data. However, it can be sensitive to noise as in the FCM algorithm. In this paper, a kernel function is applied to the possibilistic c-means (PCM) algorithm and is shown to be robust for data with additive noise. Several experimental results show that the proposed kernel possibilistic c-means (KPCM) algorithm out performs the FKCM algorithm for general data with additive noise.

An Extension of Possibilistic Fuzzy C-means using Regularization (Regularization을 이용한 Possibilistic Fuzzy C-means의 확장)

  • Heo, Gyeong-Yong;NamKoong, Young-Hwan;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means (FCM) and possibilistic c-means (PCM) are the two most well-known clustering algorithms in fuzzy clustering area, and have been applied in many applications in their original or modified forms. However, FCM's noise sensitivity problem and PCM's overlapping cluster problem are also well known. Recently there have been several attempts to combine both of them to mitigate the problems and possibilistic fuzzy c-means (PFCM) showed promising results. In this paper, we proposed a modified PFCM using regularization to reduce noise sensitivity in PFCM further. Regularization is a well-known technique to make a solution space smooth and an algorithm noise insensitive. The proposed algorithm, PFCM with regularization (PFCM-R), can take advantage of regularization and further reduce the effect of noise. Experimental results are given and show that the proposed method is better than the existing methods in noisy conditions.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

Analysis of Cone Penetration Data Using Fuzzy C-means Clustering (Fuzzy C-means 클러스터링 기법을 이용한 콘 관입 데이터의 해석)

  • 우철웅;장병욱;원정윤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.3
    • /
    • pp.73-83
    • /
    • 2003
  • Methods of fuzzy C-means have been used to characterize geotechnical information from static cone penetration data. As contrary with traditional classification methods such as Robertson classification chart, the FCM expresses classes not conclusiveness but fuzzy. The results show that the FCM is useful to characterize ground information that can not be easily found by using normal classification chart. But optimal number of classes may not be easily defined. So, the optimal number of classes should be determined considering not only technical measures but engineering aspects.

Initialization of Fuzzy C-Means Using Kernel Density Estimation (커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM) is one of the most widely used clustering algorithms and has been used in many applications successfully. However, FCM has some shortcomings and initial prototype selection is one of them. As FCM is only guaranteed to converge on a local optimum, different initial prototype results in different clustering. Therefore, much care should be given to the selection of initial prototype. In this paper, a new initialization method for FCM using kernel density estimation (KDE) is proposed to resolve the initialization problem. KDE can be used to estimate non-parametric data distribution and is useful in estimating local density. After KDE, in the proposed method, one initial point is placed at the most dense region and the density of that region is reduced. By iterating the process, initial prototype can be obtained. The initial prototype such obtained showed better result than the randomly selected one commonly used in FCM, which was demonstrated by experimental results.

Initial Prototype Selection in Fuzzy C-Means Using Kernel Density Estimation (커널 밀도 추정을 이용한 Fuzzy C-means의 초기 원형 설정)

  • Cho, Hyun-Hak;Heo, Gyeong-Yong;Kim, Kwang-Beak
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.85-88
    • /
    • 2011
  • Fuzzy C-Means (FCM) 알고리듬은 가장 널리 사용되는 군집화 알고리듬 중 하나로 다양한 응용 분야에서 사용되고 있다. 하지만 FCM은 여러 가지 문제점을 가지고 있으며 초기 원형 설정이 그 중 하나이다. FCM은 국부 최적해에 수렴하므로 초기 원형 설정에 따라 클러스터링 결과가 달라진다. 이 논문에서는 이러한 FCM의 초기 원형 설정 문제를 개선하기 위하여 커널밀도 추정 (kernel density estimation) 기법을 활용하는 방법을 제안한다. 제안한 방법에서는 먼저 커널 밀도 추정을 수행한 후 밀도가 높은 지역에 클러스터의 초기 원형을 설정하고 원형이 설정된 영역의 밀도를 감소시키는 과정을 반복함으로써 효율적으로 초기 원형을 설정할 수 있다. 제안된 방법이 일반적으로 사용되는 무작위 초기화 방법에 비해 효율적이라는 사실은 실험결과를 통해 확인할 수 있다.

  • PDF

An Enhanced Spatial Fuzzy C-Means Algorithm for Image Segmentation (영상 분할을 위한 개선된 공간적 퍼지 클러스터링 알고리즘)

  • Truong, Tung X.;Kim, Jong-Myon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.2
    • /
    • pp.49-57
    • /
    • 2012
  • Conventional fuzzy c-means (FCM) algorithms have achieved a good clustering performance. However, they do not fully utilize the spatial information in the image and this results in lower clustering performance for images that have low contrast, vague boundaries, and noises. To overcome this issue, we propose an enhanced spatial fuzzy c-means (ESFCM) algorithm that takes into account the influence of neighboring pixels on the center pixel by assigning weights to the neighbors in a $3{\times}3$ square window. To evaluate between the proposed ESFCM and various FCM based segmentation algorithms, we utilized clustering validity functions such as partition coefficient ($V_{pc}$), partition entropy ($V_{pe}$), and Xie-Bdni function ($V_{xb}$). Experimental results show that the proposed ESFCM outperforms other FCM based algorithms in terms of clustering validity functions.

A Kernel based Possibilistic C-Means Clustering Algorithm (커널 기반의 Possibilistic C-Means 클러스터링 알고리즘)

  • 최길수;최병인;이정훈
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2004.10a
    • /
    • pp.158-161
    • /
    • 2004
  • Fuzzy Kernel C-Means(FKCM) 알고리즘은 커널 함수를 통하여 구형의 데이터뿐만 아니라 Fuzzy C-Means(FCM)에서는 분류하기 힘든 복잡한 형태의 분포를 갖는 데이터를 분류할 수 있다. 하지만 FCM과 같이 노이즈에 대해서는 민감한 성질을 가진다 이처럼 노이즈(noise)에 민감한 성질을 보완하기 위해서 본 논문에서는 Possibllistic C-Means 알고리즘에 커널 함수를 적용하였다. 본 논문에서 제안된 Kernel Possibilistic C-Means(KPCM) 알고리즘은 일반적인 데이터에 대해 FKCM과 같은 성능의 클러스터링 수행이 가능하며 노이즈가 있는 데이터에 대해서는 FKCM보다 더욱 정확한 클러스터링을 수행할 수 있다.

  • PDF