• Title/Summary/Keyword: Fuzzy C-Means(FCM)

Search Result 232, Processing Time 0.027 seconds

An eigenspace projection clustering method for structural damage detection

  • Zhu, Jun-Hua;Yu, Ling;Yu, Li-Li
    • Structural Engineering and Mechanics
    • /
    • v.44 no.2
    • /
    • pp.179-196
    • /
    • 2012
  • An eigenspace projection clustering method is proposed for structural damage detection by combining projection algorithm and fuzzy clustering technique. The integrated procedure includes data selection, data normalization, projection, damage feature extraction, and clustering algorithm to structural damage assessment. The frequency response functions (FRFs) of the healthy and the damaged structure are used as initial data, median values of the projections are considered as damage features, and the fuzzy c-means (FCM) algorithm are used to categorize these features. The performance of the proposed method has been validated using a three-story frame structure built and tested by Los Alamos National Laboratory, USA. Two projection algorithms, namely principal component analysis (PCA) and kernel principal component analysis (KPCA), are compared for better extraction of damage features, further six kinds of distances adopted in FCM process are studied and discussed. The illustrated results reveal that the distance selection depends on the distribution of features. For the optimal choice of projections, it is recommended that the Cosine distance is used for the PCA while the Seuclidean distance and the Cityblock distance suitably used for the KPCA. The PCA method is recommended when a large amount of data need to be processed due to its higher correct decisions and less computational costs.

Design of RBF Neural Networks Based on Recursive Weighted Least Square Estimation for Processing Massive Meteorological Radar Data and Its Application (방대한 기상 레이더 데이터의 원할한 처리를 위한 순환 가중최소자승법 기반 RBF 뉴럴 네트워크 설계 및 응용)

  • Kang, Jeon-Seong;Oh, Sung-Kwun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.99-106
    • /
    • 2015
  • In this study, we propose Radial basis function Neural Network(RBFNN) using Recursive Weighted Least Square Estimation(RWLSE) to effectively deal with big data class meteorological radar data. In the condition part of the RBFNN, Fuzzy C-Means(FCM) clustering is used to obtain fitness values taking into account characteristics of input data, and connection weights are defined as linear polynomial function in the conclusion part. The coefficients of the polynomial function are estimated by using RWLSE in order to cope with big data. As recursive learning technique, RWLSE which is based on WLSE is carried out to efficiently process big data. This study is experimented with both widely used some Machine Learning (ML) dataset and big data obtained from meteorological radar to evaluate the performance of the proposed classifier. The meteorological radar data as big data consists of precipitation echo and non-precipitation echo, and the proposed classifier is used to efficiently classify these echoes.

Segmentation of MR Brain Image and Automatic Lesion Detection using Symmetry (뇌 자기공명영상의 분할 및 대칭성을 이용한 자동적인 병변인식)

  • 윤옥경;곽동민;김헌순;오상근;이성기
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.2
    • /
    • pp.149-154
    • /
    • 1999
  • In anatomical aspects, magnetic resonance image offers more accurate information than other medical images such as X ray, ultrasonic and CT images. This paper introduces a method that segments and detects lesion for 2 dimensional axial MR brain images automatically. Image segmentation process consists of 2 stages. First stage extracts cerebrum region using thresholding and morphology. In the second stage, white matter, gray matter and cerebrospinal fluid in the cerebrum are extracted using FCM, We could improve processing time as removing uninterested region. Finally symmetry measure and anatomical Knowledge are used to detect lesion.

  • PDF

Face recognition using Wavelets and Fuzzy C-Means clustering (웨이블렛과 퍼지 C-Means 클러스터링을 이용한 얼굴 인식)

  • 윤창용;박정호;박민용
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.583-586
    • /
    • 1999
  • In this paper, the wavelet transform is performed in the input 256$\times$256 color image and decomposes a image into low-pass and high-pass components. Since the high-pass band contains the components of three directions, edges are detected by combining three parts. After finding the position of face using the histogram of the edge component, a face region in low-pass band is cut off. Since RGB color image is sensitively affected by luminances, the image of low pass component is normalized, and a facial region is detected using face color informations. As the wavelet transform decomposes the detected face region into three layer, the dimension of input image is reduced. In this paper, we use the 3000 images of 10 persons, and KL transform is applied in order to classify face vectors effectively. FCM(Fuzzy C-Means) algorithm classifies face vectors with similar features into the same cluster. In this case, the number of cluster is equal to that of person, and the mean vector of each cluster is used as a codebook. We verify the system performance of the proposed algorithm by the experiments. The recognition rates of learning images and testing image is computed using correlation coefficient and Euclidean distance.

  • PDF

Structure Preserving Dimensionality Reduction : A Fuzzy Logic Approach

  • Nikhil R. Pal;Gautam K. Nandal;Kumar, Eluri-Vijaya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.426-431
    • /
    • 1998
  • We propose a fuzzy rule based method for structure preserving dimensionality reduction. This method selects a small representative sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected(output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means(FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule for projection. Our rule based system is computationally very efficient compared to Sammon's method and is quite effective to project new points, i.e., it has good predictability.

  • PDF

The Particle Size Distribution of Korean Soils (우리 나라 토양의 입도특성)

  • Woo, Chull-Woong;Chang, Pyoung-Wuck
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.163-166
    • /
    • 2003
  • In this study, a grouping of particle-size distributions(PSDs) by means of the fuzzy c-means clustering method(FCM) was presented. The classification was performed with the whole and the major soil series representing pedological origin. In case of the major soil series, PSDs were clustered as $2{\sim}4$ groups and the characteristics of clustering results were quite different between the soil series. It was found that the characteristics of PSDs at center of each class can be explained by formation process of each soil series. In case of whole soil data, PSDs were classified to 8 classes in which 4 classes were single mode and 4 classes were bimode distributions. Through this study, it is concluded that pedogenetic process is a plausible explanation for grain size distribution of soils.

  • PDF

A study of intelligent system to improve the accuracy of pattern recognition (패턴인식의 정화성을 향상하기 위한 지능시스템 연구)

  • Chung, Sung-Boo;Kim, Joo-Woong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.7
    • /
    • pp.1291-1300
    • /
    • 2008
  • In this paper, we propose a intelligent system to improve the accuracy of pattern recognition. The proposed intelligent system consist in SOFM, LVQ and FCM algorithm. We are confirmed the effectiveness of the proposed intelligent system through the several experiments that classify Fisher's Iris data and face image data that offered by ORL of Cambridge Univ. and EMG data. As the results of experiments, the proposed intelligent system has better accuracy of pattern recognition than general LVQ.

퍼지 클러스터링 방법을 이용한 흉부 혈관의 검출에 관한 연구

  • 황준현;박광석;민병구
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.1 no.2
    • /
    • pp.65-71
    • /
    • 1991
  • A new algorithm is proposed for the automatic detection of pulmonary blood vessels by simulating the human recognition process by the pyramid images. Large and wide vessels are detected from the most compressed level, followed by the detection of small and narrow ones from the less compressed images with FCM(fuzzy c means). As the proposed algorithm detects blood vessels orderly according to their size, there is no need to consdier the variation of parameters and the brance points which should be considered in other detection algorithms.

  • PDF

A Clustering Algorithm using the Genetic Algorithm (진화알고리즘을 이용한 클러스터링 알고리즘)

  • 류정우;김명원
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.313-315
    • /
    • 2000
  • 클러스터링에 있어서 K-means와 FCM(Fuzzy C-means)와 같은 기존의 알고리즘들은 지역적 최소 해에 수렴될 문제와 사전에 클러스터 개수를 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적 해를 찾는 진화 알고리즘을 사용하여 지역적 최소 해에 수렴되는 문제점을 개선하였으며, 클러스터의 특성을 표준편차 벡터를 계산하여 중심으로부터 포함된 데이터가 얼마나 분포되어 있는지 알 수 있는 분산도와 임의의 데이터와 모든 중심들간의 거리의 비율로서 얻어지는 소속정도를 고려하여 클러스터간의 간격을 알 수 있는 분리도를 정의함으로써 자동으로 클러스터 개수를 결정할 수 있게 하였다. 실험데이터와 가우시안 분포에 의해 생성된 다차원 실험데이터를 사용하여 제안한 알고리즘이 이러한 문제점들을 해결하고 있음을 보인다.

  • PDF

Design of Face Recognition algorithm Using PCA&LDA combined for Data Pre-Processing and Polynomial-based RBF Neural Networks (PCA와 LDA를 결합한 데이터 전 처리와 다항식 기반 RBFNNs을 이용한 얼굴 인식 알고리즘 설계)

  • Oh, Sung-Kwun;Yoo, Sung-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.5
    • /
    • pp.744-752
    • /
    • 2012
  • In this study, the Polynomial-based Radial Basis Function Neural Networks is proposed as an one of the recognition part of overall face recognition system that consists of two parts such as the preprocessing part and recognition part. The design methodology and procedure of the proposed pRBFNNs are presented to obtain the solution to high-dimensional pattern recognition problems. In data preprocessing part, Principal Component Analysis(PCA) which is generally used in face recognition, which is useful to express some classes using reduction, since it is effective to maintain the rate of recognition and to reduce the amount of data at the same time. However, because of there of the whole face image, it can not guarantee the detection rate about the change of viewpoint and whole image. Thus, to compensate for the defects, Linear Discriminant Analysis(LDA) is used to enhance the separation of different classes. In this paper, we combine the PCA&LDA algorithm and design the optimized pRBFNNs for recognition module. The proposed pRBFNNs architecture consists of three functional modules such as the condition part, the conclusion part, and the inference part as fuzzy rules formed in 'If-then' format. In the condition part of fuzzy rules, input space is partitioned with Fuzzy C-Means clustering. In the conclusion part of rules, the connection weight of pRBFNNs is represented as two kinds of polynomials such as constant, and linear. The coefficients of connection weight identified with back-propagation using gradient descent method. The output of the pRBFNNs model is obtained by fuzzy inference method in the inference part of fuzzy rules. The essential design parameters (including learning rate, momentum coefficient and fuzzification coefficient) of the networks are optimized by means of Differential Evolution. The proposed pRBFNNs are applied to face image(ex Yale, AT&T) datasets and then demonstrated from the viewpoint of the output performance and recognition rate.