• Title/Summary/Keyword: Fuzzy Analytical Hierarchy Process(AHP)

Search Result 25, Processing Time 0.03 seconds

A Framework for Evaluating Ubiquitous Services using Fuzzy AHP (Fuzzy AHP를 이용한 유비쿼터스 서비스 평가 프레임워크)

  • Kim, Su-Yeon;Hwang, Hyun-Seok
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.5
    • /
    • pp.158-167
    • /
    • 2008
  • In recent years, various information technologies including ubiquitous computing technology have been developed and deployed. The more ubiquitous services based on ubiquitous technology have widely been spread, the more evaluation methods of those services are required. In this study, we suggest a framework for evaluating ubiquitous services by identifying evaluation factors and their relative importances. Combining review of related works and experts' opinions on the evaluation, we calculate the factors affecting ubiquitous service evaluation and relative importances among those factors using fuzzy Analytical Hierarchy Process (AHP). We conduct a case study to illustrate the applicability and feasibility of the suggested framework.

  • PDF

Critical Success Factors of TQM Implementation in Vietnamese Supporting Industries

  • TRANG, Tran Van;DO, Quang Hung
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.7 no.7
    • /
    • pp.391-401
    • /
    • 2020
  • The objective of this study is to prioritize the Total Quality Management (TQM) factors based on fuzzy Analytical Hierarchy Process (AHP) method in Vietnamese supporting industries. Through an in-depth literature review, eight criteria were identified. These criteria were then divided into 32 sub-criteria. The fuzzy AHP is used to determine the percent weightings of eight categories of performance criteria that were identified via a review of the quality-management literature. These criteria include management commitment, role of the quality department, training and education, continuous improvement, quality policies, quality data and reporting, communication to improve quality, and customer satisfaction orientation. An empirical analysis of the criteria of each stage using the fuzzy AHP methodology and the expert opinion of quality management are used to evaluate the percent weightings of the criteria and sub-criteria that are synonymous with TQM implementation. The results showed that management commitment is the most critical factor; among sub-criteria, supports and responsibilities of top management is the most important. The study also identified the rank order of critical success factors of TQM. The findings suggest a generic hierarchy model for organizations to prioritize the critical factors and formulate strategies for implementing TQM in supporting industries, as well as other industries in Vietnam.

A Fuzzy AHP Model for Selection of Consultant Contractor in Bidding Phase in Vietnam

  • Ha, Tran Thanh;Hoai, Long Le;Lee, Young Dai
    • Journal of Construction Engineering and Project Management
    • /
    • v.5 no.2
    • /
    • pp.35-43
    • /
    • 2015
  • Project Management Consultant (PMC) plays a vital role in the overall performance of any project. Selecting right PMC for right project is the most crucial challenge for any construction owner. Thus, PMC selection is one of the main decisions made by owners at the early phase of construction project. It is not easy for the project owner to select a competent PMC due to the fuzziness, imprecision, vagueness, incomplete and qualitative criteria of the decision. This paper presents a model for selecting PMC contractor using the Fuzzy Analytical Hierarchy Process (FAHP). And a fuzzy number based framework is proposed to be a viable method for PMC contractor selection. A case study to illustrate the application of the model is also presented in this paper.

Fuzzy Analytic Hierarchy Process for the Evaluation of Old Dwelling Façade Design Factor

  • Park, Jin-A
    • Science of Emotion and Sensibility
    • /
    • v.16 no.3
    • /
    • pp.333-340
    • /
    • 2013
  • The purpose of this paper is to evaluate facade design factors of old dwellings using a Fuzzy Analytical Hierarchy Process (AHP) based on a pairwise comparison analysis using "Façade Design Factors" as evaluation criteria. Traditional old dwellings were presented and evaluated. A Fuzzy AHP based model was used for pairwise comparison of traditional old dwellings, whereby seven criteria and nine alternatives were described through a questionnaire and constructional data. The Fuzzy AHP was used to determine the impact of the facade design factors, because "Traditional" old dwellings are identified by the combination of their facade design factors. Furthermore, the fuzzy AHP is used to verify the feasibility and efficiency of this approach as well as for extent analysis to comprehend the priority of the traditional old dwellings using a sensibility measuring scale.

  • PDF

On the Evaluation Algrithm of Hierarchical Process using $\lambda$-Fuzzy Integral (퍼지 적분을 도입한 계증구조 평가 알고리즘)

  • 여기태;노홍승;이철영
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.2 no.1
    • /
    • pp.97-106
    • /
    • 1996
  • One of the main problems in evaluating complex objects, such as an ill-defined system, is how to treat ambiguous aspect of the evaluation. Due to the Complexity and ambiguity of the objects, many types of evaluation attributes should be identified based on the rational dsision. One of these attributes is an analytical hierarchy process (AHP). the weight of evaluation attribtes in AHP however comes from the probability measure based on the additivity. Therefore, it is notapplicable to the objects which have the property of non-additivity. In the previous studies by other researchers they intriduced the Hierarchical Fuzzy Integral method or mergd AHP and fuzzy measure for the analysis of the overlaps among the evaluation objects. But, they need more anlyses in terms of transformation of the probability measure into fuzzy measure which fits for the additivity and overlapping coefficient which affects to the fuzzy measure. Considering these matters, this paper deals that, ⅰ) clarifying the relation between the fuzzy and probability measure adopted in AHP, ii) calculating directly the family of fuzzy measure from the overlapping coefficient and probability measure. A simple algorithm for the calculation of fuzzy measures and set family of those from the above results is also proposed. Finally, the effectiveness of the algorithm developed by applying this to the problems for estimation of safety in ship berthing and for evaluation of ports in competition is verified. This implied that the new algoritnm gives better description of the system evaluation.

  • PDF

Fuzzy AHP Approach to TQM Strategy Evaluation

  • Tseng, Ming-Lang;Lin, Yuan-Hsu;Chiu, Anthony SF;Chen, Chia Yi
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.1
    • /
    • pp.34-43
    • /
    • 2008
  • In recent years, many electronics producing firms have looked upon total quality management (TQM) strategy as a means by which they could maintain competitive advantage. This empirical research evaluates TQM strategic factors in order to determine the critical success factors in environmental uncertainty. Fuzzy analytic hierarchy process (FAHP) is the proposed research methodology to discuss and tackle the different decision criteria like effective leadership, people management, customer focus, strategic plan and process management, being involved in identifying the TQM strategic critical success factors with uncertainty. The result shows that effective leadership is the most critical success factor in TQM strategy.

Project Selection of Six Sigma Using Group Fuzzy AHP and GRA (그룹 Fuzzy AHP와 GRA를 이용한 식스시그마 프로젝트 선정방안)

  • Yoo, Jung-Sang;Choi, Sung-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.149-159
    • /
    • 2019
  • Six sigma is an innovative management movement which provides improved business process by adapting the paradigm and the trend of market and customers. Suitable selection of six sigma project could highly reduce the costs, improve the quality, and enhance the customer satisfaction. There are existing studies on the selection of Six Sigma projects, but few studies have been conducted to select the correct project under an incomplete information environment. The purpose of this study is to propose the application of integrated MCDM techniques for correct project selection under incomplete information. The project selection process of six sigma involves four steps as follows: 1) determination of project selection criteria 2) calculation of relative importance of team member's competencies 3) assessment with project preference scale 4) finalization of ranking the projects. This study proposes the combination methods by applying group fuzzy Analytical Hierarchy Process (AHP), an easy defuzzified number of Trapezoidal Fuzzy Number (TrFN) and Grey Relational Analysis (GRA). Both of the weight of project selection criteria and the relative importance of team member's competencies can be evaluated by group fuzzy AHP. Project preferences are assessed by easy defuzzified scale of TrFN in case of incomplete information.)

A strategic R&D resource allocation and project selection based on R&D policy and objectives (정책목표와 연계한 전략적 R&D 투자재원배분 및 연구과제 선정방안연구)

  • 서창교;박정우
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.16 no.2
    • /
    • pp.61-61
    • /
    • 1991
  • We propose a strategic R&D resource allocation and project selection model based on national R&D policy and objectives. First, contributions to R&D policy and objectives for each R&D area are evaluated by using analytical hierarchy process (AHP). Second, fuzzy Delphi are proposed to estimate R&D budget for each R&D area. Then, a project selection grid is also introduced to implement two-phased evaluation for R&D project selection. We also discuss how to improve the consistency in AHP and how to reduce the pairwise comparison in AHP. The proposed model enables the decision makers to allocate R&D budget, and to evaluate and select the R&D proposals based on both the contribution to national R&D policy and objectives, and the size of each R&D area concurrently

A strategic R&D resource allocation and project selection based on R&D policy and objectives. (정책목표와 연계한 전략적 R&D 투자재원배분 및 연구과제 선정방안연구)

  • 서창교;박정우
    • Korean Management Science Review
    • /
    • v.16 no.2
    • /
    • pp.61-77
    • /
    • 1999
  • We propose a strategic R&D resource allocation and project selection model based on national R&D policy and objectives. First, contributions to R&D policy and objectives for each R&D area are evaluated by using analytical hierarchy process (AHP). Second, fuzzy Delphi are proposed to estimate R&D budget for each R&D area. Then, a project selection grid is also introduced to implement two-phased evaluation for R&D project selection. We also discuss how to improve the consistency in AHP and how to reduce the pairwise comparison in AHP. The proposed model enables the decision makers to allocate R&D budget, and to evaluate and select the R&D proposals based on both the contribution to national R&D policy and objectives, and the size of each R&D area concurrently.

  • PDF

On the Evaluation of Physical Distribution Service in Ports (항만물류서비스의 평가에 관하여)

    • Journal of Korean Port Research
    • /
    • v.10 no.2
    • /
    • pp.17-29
    • /
    • 1996
  • It is required to consider pricing and non-pricing factors and external economy in order to achieve the objects of physical distribution system in a port. Recently, among the three factors, much attention has been paid to non-pricing factor in the system. Although physical distribution service in a port(PDSP)has been frequently mentioned in documents and literature related to port and shipping studies, few study on it has not been systematically and scientifically made due to the following problems; $\circ$ there are not proper criteria to evaluate level and quality of PDSP and as a result it is difficult to set up a unified standard for doing so. $\circ$ algorithms to evaluate problems with complex and ambiguous attributes and multiple levels in PDSP are not available. This thesis aims to establish a paradigm to evaluate PDSP and to abvance existing decision making methods to deal with complex and ambiguous problems in PDSP. To tackle the first purpose, extensive and thorough literature survey was carried out on general physical distribution service, which is a corner stone to handle PDSp. In addition, through interviews and questionnaire to the expert, it have extracted 82 factors of physical distribution service in a port. They have been classified into 6 groups by KJ method and each group defined by the expert's advice as follows; a. Potentiality b. Exactness c. safety d. Speediness e. Convenience f. Linkage Prior to the service evaluation, many kinds of its attributes must be identified on the basis of rational decision owing to complexity and ambiguity inherent in PDSP. An analytical hierarchy process (AHP) is a method to evaluate them but it is not applicable to PDSP that have property of non-additivity and overlapped attributes. Therefore, probablility measure can not be used to evaluate PDSP but fuzzy measure is required. Hierarchical fuzzy integral method, which is merged AHP with fuzzy measure, is also not effective method to evaluate attributes because it has vary complicated way to calculate fuzzy measure identification coefficient of attributes. A new evaluation algorithm has been introduced to solve problems with multi-attribute and multi-level hierarchy, which is called hierarchy fuzzy process(HFP).Analysis on ambiguous aspects of PDSP under study which is not easy to be defined is prerequisite to evaluate it. HFP is different from algorithm existed in that it clarified the relationship between fuzzy measure and probability measure adopted in AHP and that it directly calculates the family of fuzzy measure from overlapping coefficient and probability measure to treat and evaluate ambiguous and complex aspects of PDSP. A new evaluation algorithm HFP was applied to evaluate level of physical distribution service in the biggest twenty container port in the world. The ranks of the ports are as follows; 1. Rotterdam Port, 2. Hamburg Port, 3. Singapore Port, 4. Seattle Port, 5. Yokohama Port, 6. Long beach Port, 7. Oakland Port, 8. Tokyo Port, 9. Hongkong Port, 10. Kobe Port, 11. Los Angeles Port, 12. New york Port, 13. Antwerp Port, 14. Felixstowe Port, 15. Bremerhaven Port, 16. Le'Havre Port, 17. Kaoshung Port, 18. Killung Port, 19. Bangkok Port, 20. Pusan Port

  • PDF