• Title/Summary/Keyword: Fuzzy Analysis

Search Result 1,745, Processing Time 0.025 seconds

FUZZY REASONING AND FUZZY PETRI NETS

  • Scarpelli, Helois;Gomide, Fernando
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1326-1329
    • /
    • 1993
  • This work presents a net-based structure to model approximate reasoning using fuzzy production rules, the Fuzzy Petri Net model. The Fuzzy Petri Net model is formally defined as a n-uple of elements. It allows for the representation of simple and complex forms of rules such as rules with conjunction in the antecedent and qualified rules. Parallel rules and conflicting rules can be modeled as well. We also developed an analysis method based on state equations and two fuzzy reasoning algorithms. Finally, the proposed method is applied to an example.

  • PDF

NUMERICAL SOLUTION OF ABEL'S GENERAL FUZZY LINEAR INTEGRAL EQUATIONS BY FRACTIONAL CALCULUS METHOD

  • Kumar, Himanshu
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.527-545
    • /
    • 2021
  • The aim of this article is to give a numerical method for solving Abel's general fuzzy linear integral equations with arbitrary kernel. The method is based on approximations of fractional integrals and Caputo derivatives. The convergence analysis for the proposed method is also given and the applicability of the proposed method is illustrated by solving some numerical examples. The results show the utility and the greater potential of the fractional calculus method to solve fuzzy integral equations.

Kernel-Based Fuzzy Regression Machine For Predicting Turbulent Flows

  • Hong, Dug-Hun;Hwang, Chang-Ha
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2004.04a
    • /
    • pp.91-101
    • /
    • 2004
  • The turbulent flow is of fundamental interest because the conservation equations for thermodynamics, mass and momentum are linked together. This turbulent flow consists of some coherent time- and space-organized vortical structures. Research has already shown that some dynamic systems and experimental models still cannot provide a good nonlinear analysis of turbulent time series. In the real turbulent flow, very complicated nonlinear behaviors, which are affected by many vague factors are present. In this paper, a kernel-based machine for fuzzy nonlinear regression analysis is proposed to predict the nonlinear time series of turbulent flows. In order to show the practicality and usefulness of this model, we present an example of predicting the near-wall turbulence time series as a verifiable model and compare with fuzzy piecewise regression. The results of practical applications show that the proposed method is appropriate and appears to be useful in nonlinear analysis and in fuzzy environments to predict the turbulence time series.

  • PDF

Document Layout Analysis Based on Fuzzy Energy Matrix

  • Oh, KangHan;Kim, SooHyung
    • International Journal of Contents
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2015
  • In this paper, we describe a novel method for document layout analysis that is based on a Fuzzy Energy Matrix (FEM). A FEM is a two-dimensional matrix that contains the likelihood of text and non-text and is generated through the use of Fuzzy theory. The key idea is to define an Energy map for the document to categorize text and non-text. The proposed mechanism is designed for execution with a low-resolution document image, and hence our method has a fast processing speed. The proposed method has been tested on public ICDAR 2009 datasets to conduct a comparison against other state-of-the-art methods, and it was also tested with Korean documents. The results of the experiment indicate that this scheme achieves superior segmentation accuracy, in terms of both precision and recall, and also requires less time for computation than other state-of-the-art document image analysis methods.

A fuzzy reasonal analysis of human reliability represented as fault tree structure

  • 김정만;이상도;이동춘
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.1-14
    • /
    • 1997
  • In conventional probability-based human reliability analysis, the basic human error rates are modified by experts to consider the influences of many factors that affect human reliability. However, these influences are not easily represented quantitatively, because the relation between human reliability and each of these factors in not clear. In this paper, the relation is expressed quantitatively. Furthermore, human reliability is represented by error possibilities proposed by Onisawa, which is a fuzzy set on the interval [0,1]. Fuzzy reasoning is used in this method in order to obtain error possibilities. And, it is supposed that many basic events affected by the above factors are connected to the top event through Fault Tree structure, and an estimate of the top event expressed by a member- ship function is obtained by using the fuzzy measure and fuzzy integral. Finally, a numerical example of human reliability analysis obtained by this method is given.

  • PDF

Development of the Fuzzy-Based System for Stress Intensity Factor Analysis

  • Lee, Joon--Seong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.255-260
    • /
    • 2002
  • This paper describes a fuzzy-based system for analyzing the stress intensity factors (SIFs) of three-dimensional (3D) cracks. A geometry model, i.e. a solid containing one or several 3D cracks is defined. Several distributions of local node density are chosen, and then automatically superposed on one another over the geometry model by using the fuzzy knowledge processing. Nodes are generated by the bucketing method, and ten-coded quadratic tetrahedral solid elements are generated by the Delaunay triangulation techniques. The singular elements such that the mid-point nodes near crack front are shifted at the quarter-points, and these are automatically placed along the 3D crack front. The complete finite element(FE) model is generated, and a stress analysis is performed. The SIFs are calculated using the displacement extrapolation method. To demonstrate practical performances of the present system, semi-elliptical surface cracks in a inhomogeneous plate subjected to uniform tension are solved.

The Study of Criteria Weight for Taiwan National Quality Award by Fuzzy Hierarchical Analysis

  • Li, Shao-Chang;Fu, Hsin-Pin
    • International Journal of Quality Innovation
    • /
    • v.7 no.2
    • /
    • pp.83-96
    • /
    • 2006
  • In this paper, fuzzy hierarchical analysis (FHA) is used to explore the process by which the criteria weights of the Taiwan National Quality Award (TNQA) are assigned by TNQA committee members. Each member is allowed to employ fuzzy scales in place of exact scales. Each pairwise comparison of criteria is made through a questionnaire from each TNQA committee member. The membership function of trapezoidal fuzzy numbers is introduced to specify TNQA committee members' intentions. After FHA, the reasonable range of each criterion weight of TNQA is determined. The current criteria weights of TNQA are properly verified.

Analysis of a cable-stayed bridge with uncertainties in Young's modulus and load - A fuzzy finite element approach

  • Rama Rao, M.V.;Ramesh Reddy, R.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.3
    • /
    • pp.263-276
    • /
    • 2007
  • This paper presents a fuzzy finite element model for the analysis of structures in the presence of multiple uncertainties. A new methodology to evaluate the cumulative effect of multiple uncertainties on structural response is developed in the present work. This is done by modifying Muhanna's approach for handling single uncertainty. Uncertainty in load and material properties is defined by triangular membership functions with equal spread about the crisp value. Structural response is obtained in terms of fuzzy interval displacements and rotations. The results are further post-processed to obtain interval values of bending moment, shear force and axial forces. Membership functions are constructed to depict the uncertainty in structural response. Sensitivity analysis is performed to evaluate the relative sensitivity of displacements and forces to uncertainty in structural parameters. The present work demonstrates the effectiveness of fuzzy finite element model in establishing sharp bounds to the uncertain structural response in the presence of multiple uncertainties.

Development and Analysis of Fuzzy Overall Equipment Effectiveness (OEE) in TPM (TPM에서 퍼지 OEE 모형의 개발 및 분석)

  • Choi, Sungwoon
    • Journal of the Korea Management Engineers Society
    • /
    • v.23 no.4
    • /
    • pp.87-103
    • /
    • 2018
  • This paper introduces the method to develop two main types of the fuzzy OEE (Overall Equipment Effectiveness) models via triangular membership function for measuring uncertainty. The fuzzy OEE includes model type 1 and model type 2. The model type 1 is used when the theoretical machine speed only reflects the time loss whereas model type 2 is used when the actual machine speed reflects both time and speed loss. Model type 2 has shown to perform a lower availability rate and a higher performance rate compared to model type 1. In addition, the fuzzy UPH (Unit Per Hour) which is derived from using the fuzzy OEE is presented to satisfy demand uncertainty. The fuzzy UPH can easily measure the fuzzy tact time and cycle time by reciprocating itself. Finally, this study demonstrates the fuzzy OEE models using IVIFS (Interval-Valued Intuitionistic Fuzzy Set) based on the characterization via membership function, non-membership function and hesitant function. For the purpose of analyzing the fuzzy system OEE, the OEE for each machine of plant structure is considered triangular interval-valued intuitionistic fuzzy number. Regardless of plant structure, the validity degree of fuzzy membership function of system OEE decreases when the number of machine with worst value of the validity degree increases. Corresponding examples are presented in this paper for practitioner to understand the applicability and practicability of the proposed fuzzy OEE methods.

Analysis of robustness in fuzzy control

  • Nguyen, Hung-T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.7-10
    • /
    • 1992
  • This lecture is about an investigation into a desired property of fuzzy systems when degrees of uncertainty involved are uncertain. We characterize the robustness of fuzzy logic operators by their moduli of continuity. Theoretical results for design methodology are presented and a case study is discussed.

  • PDF