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Extended Abstract. This lecture is about an investigation into a desired property of
fuzzy systems when degrees of uncertainty involved are uncertain. We characterize the
robustness of fuzzy logic operators by their moduli of continuity. Theoretical results for
design methodology are presented and a case study is discussed. )

1. MOTIVATION

From a practical viewpoint, the acquisition of a knowledge base for the design of a fuzzy
logic controller is the most delicate phase. The flexibility in choosing components of a con-
trol, such as membership functions of fuzzy concepts, combining operators, defuzzification
procedures, etc., is beneficial but requires also justifications. Thus, it is desirable that a
chosen design is insensitive to small pertubations of its components. This is similar to Neu-
ral Networks: small variations of connection weights should not affect much of the output
as well as the universal approximation property (see {2]).

In the following, we will investigate the robustness of components of fuzzy controllers
viewed as functions of several variables. Since we are concerned with comparison of contin-
uous functions in terms of their variations, we will characterize their robustness property
by their moduli of continuity (in the Theory of Approzimation of Functions, see e.g. [12]).

2. FUZZY LOGIC CONTROLLERS

To be concrete, let us specify a typical class of fuzzy control systems. If we fix Mamdani’s
implication and aggregation operators (see e.g. [3], [23]), then to design a control, we need
to choose elements of the following sets:

M : a class of memberships functions;
L : aclass of fuzzy logic connectives;
D : a class of defuzzification procedures.

The above classes have to be chosen so that the resulting systems are universal approxima-
tors. Specifically, for each integer n > 1 (dimension of the input variable), the input-output
map f : R® — R, say, in the class of controls C(M, £, D) has the following property: For
any compact set K of R", the restriction of C to K is dense (in the sup-norm) in the
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space of continuous functions on K. The following two examples (for details, see [15]) are
modifications of results in [21] and [10],

= {Gaussians membership functions},
min operator for conjunction,
= centroid defuzzification.

(1)

{continuous functions with compact support},
{continuous ¢t-norms and ¢-conorms},
{arbitrary defuzzification procedures}.

(ii)
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3. ROBUSTNESS OF OPERATORS

To spell out the rationale behind our approach to the characterization of robustness,
let’s look at £. Elements in £ are functions from [0,1]" to [0,1] (n = 1 corresponds to
negation operators, n = 2 for logical connectives like “and”, “or”, extended to n > 2 by
associativity). Let’s consider t-norms (see e.g. [5]) as binary operators for connective “and”.
Of course, it is obvious that at least robustness reflects continuity, so that we need to focus
only on continuous f-norms.

In the class A of all continuous t-norms, can we (and how) single out a continuous one
which is, roughly speaking, “more robust” (if we don’t want to say “more continuous”!)
than all others? Now, in comparing the variations of f, g € A, we can proceed as follows.
For each § € [0, 1], look at the quantities

Tf(é) = Maz ‘f((b’, y) - f(z,’y,)l over all (.’I), y)’
(z',y’) such that |z — 2’| < §and |y—y'| < §;

and the corresponding r,4(6).

As in standard Decision Theory, we say that f is more robust than g if r/(6) < r,(6)
for all § € [0,1] and there is some &y such that r(p) < 74(6o).

Note that the (continuous) function ¢ is precisely the modulus of continuity of f (see
{12]). This “measure of continuity” is used in the Theory of Approzimation of Functions for
another purpose, namely, as information for the estimation of the degree of approximation
of a continuous function by trigonometric or algebraic polynomials.

It is easy to see that

r5(8) = Min{a : |f(z,y) — f(2'y')| £ @ whenever |z ~ 2’| < § and |y - y'| < 6}.

As far as robustness of systems is concerned, only small values of § are of interest. f is said
to be locally more robust than g if ry(6) < ry(8), for é < a, for some a > 0.

Examples (for details, see [14], [16]).

(i) f(z) =1 - z is the most robust among the class of all negation operators.
(ii) f(z,y) = Min(z,y) is the most robust among the class of all t-norms.

(iii) f(x,y) = Maz(z,y) is the most robust among the class of all ¢-conorms.



Remarks.

a) The above most robust operators are unique in their respective classes.

b) They are “really” robust in that they are strictly less other candidates in some neigh-
borhood of zero.

c) Let AV denote the class of normalization operators of the form f : [0,8] — [0,1] with f
being increasing and f(0) = 0, f(B8) = 1 (for B fixed). Then there is no (global) most
robust element in M. However, f(z) = z/8 is most locally robust.

4. ROBUSTNESS OF OTHER COMPONENTS AND RESEARCH ISSUES

(i) An empirical study was carried in [17] to check our approach to the mathematical
formulation of robustness with positive results. Incidentally, the same study indicated that
the fuzzy controller so designed is also “robust” in another sense, namely it continues to
perform well within a larger class of controlled plants (i.e. when the dynamics class changes).
The choice of a robust fuzzy logic, as well as other robust components in fuzzy control, is
recommended when robustness property is of major concern in the design.

(ii) As mentioned in the Motivation, modeling of fuzzy knowledge is the most delicate
step. In general, the meaning of a fuzzy concept might guide us in this art. Robust
modeling of membership functions can be obtained in each specific class of functions (for
more information, see again [16]). More works are needed.

(iii) In [23], general defuzzification procedures are described. The robustness of these
procedures is more complex because the domain of these operators is some function space.
As a first step, we have compared two well-known procedures, namely centroid and center-
of-maximum. It was found that ([16]) the centroid rule is continuous, while the other is
not.

(iv) So far we are concerned only with control (or general systems) based upon common
sense or experts’ knowledge (expressed, say, in linguistic form). In many situations, we
might also have statistical data. From an intuitive standpoint, more knowledge should
lead to better systems. However, the process of combining statistical and linguistic data
is still an art. Theoretical research is needed to point the way to a theory of data fusion
which guarantees that adding experts’ knowledge to numerical data can only enhance the
performance of systems.
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