• Title/Summary/Keyword: Future water demand change

Search Result 61, Processing Time 0.028 seconds

Drought risk outlook using scenario planning and drought management according to drought risk levels in Korea (시나리오 플래닝을 적용한 한국의 가뭄 위험도 전망 및 가뭄 위험 단계에 따른 가뭄관리 방안)

  • Kim, Ji Eun;Kim, Min Ji;Kim, Seok-Woo;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.45-58
    • /
    • 2024
  • Drought risk is expected to increase as the frequency, intensity, and duration of droughts increase due to climate change. Drought risk is related to not only hydro-meteorological factors, but also water supply and demand. Recently, along with climate change, socioeconomic factors have also been recognized to increase drought risk. Therefore, it is necessary to outlook the drought risk considering various conditions for coping with future extreme droughts in a timely manner. In addition, considering various drought scenarios help reduce the uncertainty in future drought outlook. In this study, drought scenarios considering climate change scenarios, population, and water demand were created to outlook drought risk for 160 administrative districts in Korea, then new levels of drought risk were assigned based on the results of drought risk outlook to suggest drought management measures. The results showed that the drought risk will increase in the future in 2020, 2025, and 2030, compared to past. Especially the drought risk is likely twice as high in 2030 under the baseline and high scenarios. Applying the drought outlook results from this study to the new methodology for setting the risk levels shows that most regions are in Response (V) in 2020 and 2030 for baseline and high scenarios.

Climate Change and Soil-Water Balance

  • Aydin, Mehmet;Yano, Tomohisa;Haraguchi, Tomokazu;Evrendilek, Fatih;Jung, Yeong-Sang
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2011.11a
    • /
    • pp.7-10
    • /
    • 2011
  • The semi-arid and arid regions comprise almost 40 percent of the world's land surface. The low and erratic precipitation pattern is the single most significant contributor for limiting crop production in such regions where rainfall is the source for surface, soil and ground water. In a changing climate, the semi-arid and arid regions would increasingly face the challenge of water scarcity. According to the relevant literature; under the assumption of a doubling of the current atmospheric CO2 concentration, irrigation demand was estimated to increase for wheat and to decrease for second crop maize in a Mediterranean environment of Turkey in the 2070s. Crop evapotranspiration would decrease due to stomata closure. Reference evapotranspiration and potential soil evaporation were projected to increase by 8.0 and 7.3%, respectively, whereas actual soil evaporation was predicted to decrease by 16.5%. Drainage losses below 90 cm soil depth were found to decrease mainly due to lesser rainfall amount in the future.

  • PDF

Challenges of Groundwater as Resources in the Near Future

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2015
  • Groundwater has been a very precious resource for human life and economic development in the world. With increasing population and food demand, the groundwater use especially for agriculture is largely elevated worldwide. The very much large groundwater use results in depletion of major aquifers, land subsidences in many large cities, anthropogenic groundwater contamination, seawater intrusion in coastal areas and accompanying severe conflicts for water security. Furthermore, with the advent of changing climate, securing freshwater supply including groundwater becomes a pressing and critical issue for sustainable societal development in every country because prediction of precipitation is more difficult, its uneven distribution is aggravating, weather extremes are more frequent, and rising sea level is also threatening the freshwater resource. Under these difficulties, can groundwater be sustaining its role as essential element for human and society in the near future? We have to focus our efforts and wisdom on answering the question. Korean government should increase its investment in securing groundwater resources for changing climate.

Thermal analysis model for electric water pumps with non-conductive cooling liquid (비전도성 충진액을 포함하는 전동워터펌프 열 해석 모델)

  • Jung, Sung-Taek;Yoon, Seon-Jhin;Ha, Seok-Jae
    • Design & Manufacturing
    • /
    • v.16 no.2
    • /
    • pp.46-52
    • /
    • 2022
  • As the consumer market in the eco-friendly vehicle industry grows, the demand for water pump in a electric car parts market. This study intend to propose a mathematical model that can verify the effect of improving thermal properties when a non-conductive cooling filler liquid is introduced into an electric vehicle water pump. Also, the pros and cons of the immersion cooling method and future development way were suggested by analyzing the cooling characteristics using on the derived analysis solution. Thermal characteristics analysis of electric water pump applied with non-conductive filler liquid was carried out, and the diffusion boundary condition in the motor body and the boundary condition the inside pump were expressed as a geometric model. As a result of analyzing the temperature change for the heat source of the natural convection method and the heat conduction method, the natural convection method has difficulty in dissipating heat because no decrease in temperature due to heat release was found even after 300 sec. Also, it can be seen that the heat dissipation effect was obtained even though the non-conductive filling liquid was applied at the 120 sec and 180 sec in the heat conduction method. It has proposed to minimize thermal embrittlement and lower motor torque by injecting a non-conductive filler liquid into the motor body and designing a partition wall thickness of 2.5 mm or less.

VALUATION OF A MULTI-STAGE RAINWATER HARVESTING TANK CONSTRUCTION USING A REAL OPTION APPROACH

  • Byungil Kim;Hyoungkwan Kim;SangHyun Lee
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.386-389
    • /
    • 2013
  • Under climate change and urbanization, rainwater harvesting (RWH) systems are emerging as an alternative source of water supply because of growing concern about water sustainability. RWH systems can satisfy the various watering needs and provide the environmental benefits of lessening the damages from flood, drought, and runoff. The economic success of a RWH system is vitally concerned with the determination of the design capacity of storage tank to be built in the system. The design capacity is determined by the factors of average annual rainfall, period of water scarcity, and water price during the whole life-cycles. Despite the high uncertainties inherent in these factors, the current engineering design of RWH system construction often assumes that storage tanks should be built all at once. This assumption implicitly ignores the managerial flexibility in responds to the future as new information comes out-the right to build storage tanks stage by stage depending on the evolution of demand. This study evaluates the value of a multistage storage tank construction using a real option approach. A case study involving a typical RWH system construction in Jeonju, the Republic of Korea is conducted. The managerial flexibility obtained from the real option perspective allows engineers to develop investment strategies to better cope with the issue of water sustainability.

  • PDF

A Study on Types of Natural Elements Introduced in Contemporary Japanese Residential Space - Focused on the Plants & Water - (현대 일본 주거공간 디자인에 나타난 자연요소 도입유형에 관한 연구 - 식물과 물을 중점으로 -)

  • Kim, Jeong-Ah
    • Journal of the Korean housing association
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • Recently, as people have more interest in health, and some change takes place in their lifestyles, a demand for environment-friendly residential space is also increasing. Research on the introduction of natural elements is mostly conducted for humans to pursue a more pleasant and comfortable life in residential space since it has one of the closest relation with humans. Therefore, it is such an important assignment at present when environmental problems are considered significant. Based on such a necessity, this study analyzed the introduction types and characteristics of natural elements in residential space by considering essential and psychological aspects more than previous researches on residential space with practical and functional aspects. As natural elements, this study put limits on plants and water that are used a lot in the interior space, and by dividing introduction types into recomposition of courtyard space, spatial partition and decorative elements, this study carried out a case analysis of residential space structures recently completed in Japan. As a basic research on space planning that is desperately required by change in the residential life paradigm and on the basis of understanding about nature, it is expected that the results of this study will be used as design basic data useful when establishing plans of introducing natural elements for residential space in the future.

Future water supply risk analysis using a joint drought management index in Nakdong river basin (결합가뭄관리지수(JDMI)를 이용한 낙동강 유역의 미래 용수공급 위험도 분석)

  • Yu, Ji Soo;Choi, Si-Jung;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.spc
    • /
    • pp.1117-1126
    • /
    • 2018
  • Water supply system aims to meet the user's demand by securing water resources in a stable way. However, water supply failure sometimes happens because inflow decreases during drought period. Droughts induced by the lack of precipitation do not always lead to water supply failures. Thus, it is necessary to consider features of actual water shortage event when we evaluate a water supply risk. In this study, we developed a new drought index for drought management, i.e., Joint Drought Management Index (JDMI), using two water supply system performance indices such as reliability and vulnerability. Future data that were estimated from GCMs according to RCP 4.5 and 8.5 scenarios were used to estimate future water supply risk. After dividing the future period into three parts, the risk of water supply failure in the Nakdong River basin was analyzed using the JDMI. As a result, the risk was higher with the RCP 4.5 than the RCP 8.5. In case of RCP 4.5, W18 (Namgangdam) was identified as the most vulnerable area, whereas in case of RCP 8.5, W23 (Hyeongsangang) and W33 (Nakdonggangnamhae) were identified as the most vulnerable area.

Development and application of integrated indicators for assessing the water resources performance of multi-purpose and water supply dams (댐 용수공급능력 안정성 평가를 위한 통합지표 개발 및 적용)

  • Sung, Jiyoung;Kang, Boosik;Kim, Bomi;Noh, Seongjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.687-700
    • /
    • 2022
  • For comprehensively assessment the water resources performance of multi-purpose dams and water supply dams in South Korea, a methodology was proposed to utilize the durational reliability along with the integrated auxiliary indicators including resiliency, dimensionless vulnerability, water resource efficiency, specific inflow, and specific water supply. In addition, for the purpose of sustainable dam operation in the future, a plan to grade the water resources performance was presented to periodically evaluate the performance and determine the priority of each dam's structural or non-structural planning according to the evaluation results. As major results, in the case of Sumjingang Dam, the durational reliability was 99.0%, but the integrated auxiliary index was the lowest of 44 points, which was 5th grade. This means that despite the current high reliability, hydrological changes due to future climate change or regional change of water demand-supply balance can have significant impacts on the water resources performances. In contrast, the Chungju Dam with a durational reliability of 93.0%, which is below the average among all multi-purpose dams, shows the 76 points of the integrated auxiliary index, which is 3rd highest following the Soyanggang Dam and the Namgang Dam. Nevertheless, due to the size of the basin, the specific inflow is sufficiently high as 185%, so the actual performance could be evaluated relatively high. The water supply dams designed for a single purpose tend to be evaluated relatively high because they have a high proportion of industrial and municipal water supply and have enough room for the supply capacity.

Development of an evaluation index based on supply capacity for practical evaluation of drought resilience (현실적 가뭄대응력 평가를 위한 공급가능일수 기반의 평가지표 개발)

  • Kim, Gi Joo;Kim, Jiheun;Seo, Seung Beom;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.11-21
    • /
    • 2023
  • This study suggests the drought resilience index as S-day as a means of preparing for the recent extreme drought, allowing for the actual operational identification of each drought countermeasure's priority as well as the vulnerability of water resource facilities to drought. Although each dam's drought measures are unique in this case, the representative examples include adjusting the water supply, linking the functioning of various facilities, and considering emergency capacity. Here, 15 multipurpose dams and water supply dams in Korea were inspected. Under the return period of 20-year drought, most of dams showed stable by adjusting the water supply overall. The measures, however, did not seem to be able to resist a multi-year drought lasting more than two years. Besides, Hoengseong and Anodong-Imha Dam only lasted a year under the 100-year drought return period with other measures. Without the deployment of drought mitigation strategies, it is expected that the Hoengseong Dam, Andong-Imha Dam, Gunwi Dam, Unmun Dam, Daecheong Dam, and Juam Dam would not be able to meet the all water demand for a year under the 20-year drought condition. The ideal capacity for each drought measure was then suggested. Additionally, by increasing or decreasing the current supply contract by 10% in order to account for demand changes resulting from socio-economic instability, the drought response capacity of all 15 dams was re-evaluated. By lowering the supply contract amount by 10%, it was possible to endure a severe drought.

Water Resources Management Challenge in the Citarum River Basin, Indonesia

  • Wicaksono, Albert;Yudianto, Doddi;Jeong, Gimoon;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.198-198
    • /
    • 2016
  • The Citarum River Basin is the biggest river basin in West Java Province, Indonesia and it plays strategic roles in providing water for irrigation, domestic and industrial uses, and power generation, besides controlling the flood during rainy season. Flowing through seven major cities makes the river flow and water demand are vulnerable to land use change around the river. The present water resources management has involved the regulator, operator, and users in deciding an appropriate water management plan for the entire basin. The plan includes an operation plan for three reservoirs, construction or maintenance of the river channel, and water allocation for all users along the river. Following this plan, a smaller operation group will execute and evaluates the plan based on the actual flow condition. Recently, a deforestation, environment degradation, river sedimentation, a rapid growth of population and industry, also public health become new issues that should be considered in water basin planning. Facing these arising issues, a new development program named ICWRMIP was established to advance the existing management system. This program includes actions to strengthen institutional collaboration, do the restoration and conservation of the river environment, improve water quality and public health, also advance the water allocation system. At present, the water allocation plan is created annually based on a forecasted flow data and water usage prediction report. Sometimes this method causes a difficulty for the operator when the actual flow condition is not the same as the prediction. Improving existing system, a lot of water allocation studies, including a development of the database and water allocation simulation model have been placed to help stakeholders decide the suitable planning schemes. In the future, this study also tries to contribute in advancing water allocation planning by creating an optimization model which ease stakeholders discover a suitable water allocation plan for individual users.

  • PDF