DOI QR코드

DOI QR Code

Drought risk outlook using scenario planning and drought management according to drought risk levels in Korea

시나리오 플래닝을 적용한 한국의 가뭄 위험도 전망 및 가뭄 위험 단계에 따른 가뭄관리 방안

  • Kim, Ji Eun (Department of Hydro Science and Engineering Research Korea Institute of Civil Engineering and Building Technology) ;
  • Kim, Min Ji (Department of Smart City Engineering, Hanyang University) ;
  • Kim, Seok-Woo (Department of Civil and Environmental System Engineering, Hanyang University) ;
  • Kim, Tae-Woong (Department of Civil and Environmental Engineering, Hanyang University)
  • 김지은 (한국건설기술연구원 수자원하천연구본부) ;
  • 김민지 (한양대학교 대학원 스마트시티공학과) ;
  • 김석우 (한양대학교 대학원 건설환경시스템공학과) ;
  • 김태웅 (한양대학교(ERICA) 건설환경공학과)
  • Received : 2023.08.10
  • Accepted : 2024.01.02
  • Published : 2024.01.31

Abstract

Drought risk is expected to increase as the frequency, intensity, and duration of droughts increase due to climate change. Drought risk is related to not only hydro-meteorological factors, but also water supply and demand. Recently, along with climate change, socioeconomic factors have also been recognized to increase drought risk. Therefore, it is necessary to outlook the drought risk considering various conditions for coping with future extreme droughts in a timely manner. In addition, considering various drought scenarios help reduce the uncertainty in future drought outlook. In this study, drought scenarios considering climate change scenarios, population, and water demand were created to outlook drought risk for 160 administrative districts in Korea, then new levels of drought risk were assigned based on the results of drought risk outlook to suggest drought management measures. The results showed that the drought risk will increase in the future in 2020, 2025, and 2030, compared to past. Especially the drought risk is likely twice as high in 2030 under the baseline and high scenarios. Applying the drought outlook results from this study to the new methodology for setting the risk levels shows that most regions are in Response (V) in 2020 and 2030 for baseline and high scenarios.

기후변화로 인해 가뭄의 빈도, 심도 및 지속기간 등이 증가함에 따라 가뭄 위험도가 높아질 것으로 전망되고 있다. 가뭄 위험도는 수문기상학적 요인뿐만 아니라 용수의 공급 및 수요와 관련 있다. 최근에는 기후변화와 함께 사회경제적인 요인도 가뭄 위험도를 높이는 것으로 나타나고 있다. 따라서 미래에 발생가능한 심각한 가뭄에 적절히 대응하기 위하여 다양한 조건에서의 가뭄 위험도를 전망할 필요가 있다. 또한, 다양한 시나리오를 고려하는 것은 미래의 가뭄 위험도 전망이 가지는 불확실성을 줄이는데 도움이 될 것이다. 본 연구에서는 한국의 160개 시군구에 대한 기후변화 시나리오와 인구 및 용수 수요량 등을 고려하여 가뭄 시나리오를 작성하고 이에 따른 가뭄 위험도를 전망하였으며, 가뭄 위험도 전망 결과를 토대로 가뭄 위험 단계를 재설정하였다. 그 결과 한국의 가뭄 위험도는 과거에 비해 2020, 2025 및 2030년에서 모두 높아지는 것으로 나타났다. 특히, 기준 및 고위 시나리오에 따르면 2030년에는 가뭄 위험도가 과거보다 약 2배 정도 증가하는 것으로 나타났다. 본 연구에서 산정된 가뭄 전망 결과를 새로운 가뭄 위험 단계에 적용한 결과, 기준 및 고위 시나리오에서는 2020년 및 2030년에 한국 대부분의 지역에서 대응(V) 단계로 나타났다.

Keywords

Acknowledgement

본 연구는 한국연구재단의 중견연구자지원사업(2020R1A2C1012919)과 한국환경산업기술원의 가뭄대응 물관리혁신기술개발사업(2022003610001)의 지원을 받아 연구되었습니다.

References

  1. Cho, S.W., Kim, W.S., and Won, S.H. (2018). "Scenario development for loss estimation according to port disaster." Korea E-Trade Research Institute, Vol. 16, No. 2, pp. 39-60. (In Korean)
  2. Chung, H.W., Kim, Y.S., Kim, K.T., Choi, H.J., and Hong, S.J. (2021). The impact of future changes on the social welfare: Delphi surveys and scenario planning. Korea Institute for Health and Social Affairs. (In Korean)
  3. Frischen, J., Meza, I., Rupp, D., Wietler, K., and Hagenlocher, M. (2020). "Drought risk to agricultural systems in Zimbabwe: A spatial analysis of hazard, exposure, and vulnerability." Sustainability, Vol. 12, No. 3, pp. 1-23. https://doi.org/10.3390/su12030752
  4. Jeong, W.H. (2016). Evaluation of Boryeong Dam water supply capacity and research on drought response measures. ChungNam Institute. (In Korean)
  5. Kahn, H., and Wiener, A.J. (1967). Year 2000; a framework for speculation on the next thirty-three years. EUA: The MacMillan Company, New York, NY, U.S.
  6. Kim, J.E., Kim, M.J., Choi, S.J., Lee, J.H., and Kim, T.W. (2022). "Drought risk assessment considering regional socio-economic factors and water supply system." Journal of Korea Water Resources Association, Vol. 55, No. 8, pp. 589-601. (In Korean)
  7. Kim, J.E., Lee, B.S., Yoo, J.Y., Kwon, H.H., and Kim, T.W. (2021a). "Low-flow frequency analysis and drought outlook in water districts under climate change scenarios: A case study of Gim cheon-si, Korea." Journal of Wetlands Research, Vol. 23, No. 1, pp. 14-26. (In Korean) https://doi.org/10.17663/JWR.2021.23.1.14
  8. Kim, J.E., Yu, J.S., Ryu, J.H., Lee, J. H., and Kim, T.W. (2021b). "Assessment of regional drought vulnerability and risk using principal component analysis and a Gaussian mixture model." Natural Hazards, Vol. 109, No. 1, pp. 707-724. https://doi.org/10.1007/s11069-021-04854-y
  9. Kim, J.U., Lee, J.W., and Kim, S.J. (2019). "Evaluation of the future agricultural drought severity of South Korea by using reservoir drought index (RDI) and climate change scenarios." Journal of Korea Water Resources Association, Vol. 52, No. 6, pp. 381-395. (In Korean)
  10. Kotir, J.H., Smith, C., Brown, G., Marshall, N., and Johnstone, R. (2016). "A system dynamics simulation model for sustainable water resources management and agricultural development in the Volta River Basin, Ghana." Science of the Total Environment, Vol. 573, pp. 444-457. https://doi.org/10.1016/j.scitotenv.2016.08.081
  11. Lee, M.H., and Kim, S.B. (2021). A study on establishment of cooperative system for drought management to respond to climate crisis. Korea Environmental Institute. (In Korean)
  12. Mallampalli, V.R., Mavrommati, G., Thompson, J., Duveneck, M., Meyer, S., Ligmann-Zielinska, A., and Borsuk, M.E. (2016). "Methods for translating narrative scenarios into quantitative assessments of land use change." Environmental Modelling & Software, Vol. 82, pp. 7-20. https://doi.org/10.1016/j.envsoft.2016.04.011
  13. Nam, W.H., Hayes, M.J., Wilhite, D.A., Tadesse, T., Svoboda, M.D., and Knutson, C.L. (2014). "Drought management and policy based on risk assessment in the context of climate change." Magazine of the Korean Society of Agricultural Engineers, Vol. 56, No. 2, pp. 2-15. (In Korean)
  14. Peddada, K. (2013). "Risk assessment and control." Journal of Governance and Regulation, Vol. 2, pp. 51-59. https://doi.org/10.22495/jgr_v2_i2_p4
  15. Qin, Q.X., and Zhang, Y.B. (2018). "Evaluation and improvement of water supply capacity in the region." Journal of Management and Sustainability, Vol. 8, No. 4, pp. 113-124. https://doi.org/10.5539/jms.v8n4p113
  16. Rangecroft, S., Birkinshaw, S., Rohse, M., Day, R., McEwen, L., Makaya, E., and Van Loon, A.F. (2018). "Hydrological modelling as a tool for interdisciplinary workshops on future drought." Progress in Physical Geography: Earth and Environment, Vol. 42, No. 2, pp. 237-256. https://doi.org/10.1177/0309133318766802
  17. Sahana, V., Mondal, A., and Sreekumar, P. (2021). "Drought vulnerability and risk assessment in India: sensitivity analysis and comparison of aggregation techniques." Journal of Environmental Management, Vol. 299, 113689.
  18. Schwab, P., Cerutti, F., and Helene von Reibnitz, U. (2003). "Foresight-using scenarios to shape the future of agricultural research." Foresight, Vol. 5, No. 1, pp. 55-61. https://doi.org/10.1108/14636680310471299
  19. Singh, G.R., Jain, M.K., and Gupta, V. (2019). "Spatiotemporal assessment of drought hazard, vulnerability and risk in the Krishna River basin, India." Natural Hazards, Vol. 99, pp. 611-635. https://doi.org/10.1007/s11069-019-03762-6
  20. Song, M.S., Kim, T.W., Lee, J.J., and Yun, H.S. (2017). "HABs risk mapping for aquaculture farm using GIS in south sea of Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 5, pp. 377-383. (In Korean) https://doi.org/10.9798/KOSHAM.2017.17.5.377
  21. Wang, H., Huang, J., Cheng, X., Zhou, H., and Yuan, Y. (2022). "Scenario simulation of water resources development and utilization based on a system dynamics model." International Journal of Water Resources Development, Vol. 38, No. 3, pp. 447-463. https://doi.org/10.1080/07900627.2021.1908235
  22. Yang, J.S., Park, J.H., and Kim, N.K. (2012). "Development of drought vulnerability index using trend analysis." KSCE Journal of Civil and Environmental Engineering Research, Vol. 32, No. 3B, pp. 185-192.
  23. Yeo, H.S., Kim, Y.H., and Kim, J.H. (2023). "Forecasting of future technology based on the law of technology evolution and scenario planning: Focused on telemedicine & digital health service." Asia-pacific Journal of Convergent Research Interchange, Vol. 9, No. 3, pp. 169-191.
  24. Yoo, J.Y., Kwon, H.H., and Kim, T.W. (2015). "Drought management and response in the United Kingdom." KSCE Magazine, Vol. 63, No. 2, pp. 60-65. (In Korean)
  25. Yu, J.S., Kim, T.W., and Park, D.H. (2019). "Future hydrological drought risk assessment based on nonstationary joint drought management index." Water, Vol. 11, No. 3, pp. 1-12. https://doi.org/10.3390/w11030532