• Title/Summary/Keyword: Future fuel

Search Result 745, Processing Time 0.033 seconds

MAKING THE CASE FOR SAFE STORAGE OF USED NUCLEAR FUEL FOR EXTENDED PERIODS OF TIME: COMBINING NEAR-TERM EXPERIMENTS AND ANALYSES WITH LONGER-TERM CONFIRMATORY DEMONSTRATIONS

  • Sorenson, Ken B.;Hanson, Brady
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.421-426
    • /
    • 2013
  • The need for extended storage of used nuclear fuel is increasing globally as disposition schedules for used fuel are pushed further into the future. This is creating a situation where dry storage of used fuel may need to be extended beyond normal regulatory licensing periods. While it is generally accepted that used fuel in dry storage will remain in a safe condition, there is little data that demonstrate used fuel performance in dry storage environments for long periods of time. This is especially true for high burnup used fuel. This paper discusses a technical approach that defines a process that develops the technical basis for demonstrating the safety of used fuel over extended periods of time.

Estimation of Energy Use in Residential and Commercial Sectors Attributable to Future Climate Change (미래 기후변화에 따른 가정 및 상업 부문 에너지수요 변화 추정)

  • Jeong, Jee-Hoon;Kim, Joo-Hong;Kim, Baek-Min;Kim, Jae-Jin;Yoo, Jin-Ho;Oh, Jong-Ryul
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.515-522
    • /
    • 2014
  • In this study it is attempted to estimate the possible change in energy use for residential and commercial sector in Korea under a future climate change senario. Based on the national energy use and observed temperature data during the period 1991~2010, the optimal base temperature for determining heating and cooling degree days (HDD and CDD) is calculated. Then, net changes in fossil fuel and electricity uses that are statistically linked with a temperature variation are quantified through regression analyses of HDD and CDD against the energy use. Finally, the future projection of energy use is estimated by applying the regression model and future temperature projections by the CMIP5 results under the RCP8.5 scenario. The results indicate that, overall, the net annual energy use will decrease mostly due to a large decrease in the fossil fuel use for heating. However, a clear seasonal contrast in energy use is anticipated in the electricity use; there will be an increase in a warm-season demand for cooling but a decrease in a cold-season demand for heating.

Multilateral Approaches to the Back-end of the Nuclear Fuel Cycle: Challenges and Possibilities (후행 핵연료주기의 다자 방안 분석)

  • Ryu, Ho-Jin
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.269-277
    • /
    • 2010
  • Various multilateral approaches to the nuclear fuel cycle have been proposed in order to suppress the expansion of sensitive fuel cycle technology. In order to prepare for the future multilaterallization of the nuclear fuel cycle, existing multilateral spent fuel management programs are analyzed. A trial multilateralization of a domestic R&D facility for the back end of the nuclear fuel cycle is proposed and its challenges, possibilities and implementation strategy are discussed.

Technology Trends of Fuel Cell Power Plant Based on Biogas Fuel (바이오가스 연료기반 연료전지발전 기술동향)

  • Lee, Jong-Gyu;Jeon, Jae-Ho;Lee, Jong-Yeon
    • New & Renewable Energy
    • /
    • v.4 no.3
    • /
    • pp.5-14
    • /
    • 2008
  • The target for the reduction of $CO_2$ emissions, as specified in the Kyoto Protocol, can only be achieved by an extended use of renewable fuels and the increasing of the energy efficiency. The energy generation from waste gases with a reasonable content of methane like biogas can significantly contribute to reach this target. A further reduction of greenhouse gas emissions is possible by increasing the electrical efficiency using progressive technologies. Fuel cells can be highly energy conversion devices. Utilizing biogas as the fuel for fuel cell systems offers an option that is technically feasible, potentially economically attractive and greenhouse gas neutral. High temperature fuel cells that are able to operate with carbon monoxide in the feed are well suited to these applications. Furthermore, because they do not require noble metal catalysts, the cost of high-temperature fuel cells has the greatest potential to become competitive in the near future compared to other types of fuel cells.

  • PDF

Feasibility study of fuel flexibility on Gas Turbine for power Generation (발전용 가스터빈의 연료다변화 연구)

  • Park, Seik;Joo, YongJin
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.273-274
    • /
    • 2015
  • Fuel flexibility remains a critical issue related the development of low emission lean premixed combustion system and the combustion adjustment technique. To cover the this work scope with our own technology, KEPCO had focused on operational technology related to GT combustion control. The main purpose of this paper is summary of the research works on fuel flexibility in KRPCO Research Institute recently. Furthermore, the specifications of test facility and research work in the future in KEPRI were also explained briefly for expected collaborative research team in Korea.

  • PDF

The State of the Art of the Fuel Cells (연료전지 기술현황)

  • Lee, Jin-Hong;ShunWoo, Hyun-Bum
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.3-12
    • /
    • 1991
  • Fuel cells are electrochemical devices that convert the chemical reaction energy directly into the electrical energy. In a typical fuel cell, gaseous fuel is fed continuously to the anode(negative electrode) compartment and the oxidant(i.e, oxygen from air) is fed continuously to the cathode(positive electrode) compartment; the electrochemical reactions take place at the electrodes to produce an electric current. Many of the operational characteristics of fuel cell systems are superior to those of conventional power generation system because of good efficiency, environmental protection, safty, modularity etc. From those reasons, the fuel cells are considered to be the solution to the future problem of energy conversion. The objective of this paper is to introduce the technical status of fuel cell technologies and our national project for the development of the phosporic acid fuel cell.

  • PDF

The Effect of Air Pollutant to Fuel Cell Electric Vehicle (대기오염물질로 인한 연료전지자동차 출력 변화에 대한 연구)

  • Rhee, Jun-Ki;Park, Sang-Sun;Shul, Yong-Gun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.154-157
    • /
    • 2009
  • Fuel cell is spotlighted as next energy source of future. The fuel of vehicle will be changed from fossil fuel such as gasoline, diesel to hydrogen. Polymer electrolyte membrane fuel cell(PEMFC) will be used to fuel cell vehicle because of its suitability. PEMFCs need oxygen for cathode. Because PEMFCs in vehicle use air for oxygen, air pollutant will be effect to performance of PEMFC. In this study, we examine a type of filter and pollutant gas how can be effect to performance of fuel cell electric vehicle.

  • PDF

Fuel Cell Performance by the Impedance Method (연료전지의 임피던스방법 적용 연구)

  • Kim, Gwi-Yeol
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.510-511
    • /
    • 2008
  • Fuel cell is a modular, high efficient and environmentally energy conversion device, it has become a promising option to replace the conventional fossil fuel based electric power plants. The high temperature fuel cell has conspicuous feature and high potential in being used as an energy converter of various fuel to electricity and heat. And, The research and development for the solid oxide fuel cell have been promoted rapidly and extensively in recent years, because of their high efficiency and future potential. Therefore this paper describes the manufacturing method and characteristics of anode electrode for solid oxide fuel cell, by the way, Ni-YSZ materials are used as anode of high temperature widely. So in this experiments, we investigated the optimum content of Ni, by the impedance characteristics, overvoltage. As a result, the performance of Ni-YSZ anode(40vol%) was better excellent than the others.

  • PDF

Protective Coatings for Accident Tolerant Fuel Claddings - A Review

  • Rofida Hamad Khlifa;Nicolay N. Nikitenkov
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.21 no.1
    • /
    • pp.115-147
    • /
    • 2023
  • The Fukushima accident in 2011 revealed some major flaws in traditional nuclear fuel materials under accidental conditions. Thus, the focus of research has shifted toward "accident tolerant fuel" (ATF). The aim of this approach is to develop fuel material solutions that lead to improved reactor safety. The application of protective coatings on the surface of nuclear fuel cladding has been proposed as a near-term solution within the ATF framework. Many coating materials are being developed and evaluated. In this article, an overview of different zirconium-based alloys currently in use in the nuclear industry is provided, and their performances in normal and accidental conditions are discussed. Coating materials proposed by different institutions and organizations, their performances under different conditions simulating nuclear reactor environments are reviewed. The strengths and weaknesses of these coatings are highlighted, and the challenges addressed by different studies are summarized, providing a basis for future research. Finally, technologies and methods used to synthesize thin-film coatings are outlined.

A Study on Compatibility of Vehicle Using Alternative Fuels (자동차 대체연료의 상호호환성 연구)

  • Lee, Taek-Hee;Kang, Seung-Jin
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.61 no.2
    • /
    • pp.74-81
    • /
    • 2012
  • The purpose of this study provides the theoretical model for protecting the economic and social loss from the current alternative fuel vehicle which is developed without compatibility and senseless one's own through verifying the statistical significant by method of measuring analysis. The market scale of alternative fuel vehicle depends on customer's and station's expectation about the number of potential vehicle users. It is very difficult for vehicle manufacturer to make a decision on the standard alternative fuel vehicle as it might reduce profit and market share. Accordingly, the development of alternative fuel vehicle should have manufacturer confident on the potential profit in the future. Moreover, if we decide to use the non-standard fuel after we started to use the standard fuel, it would take a huge cost comparing with starting to use the standard fuel only. As a result, once one of companies starts to provide the non-standard fuel service, it is getting more difficult to use the standard fuel going forward. Consequently, we may review the possibility of choice on the standard fuel before the vehicle manufacturer starts service with non-standard fuel.