• Title/Summary/Keyword: Future Ground Combat Vehicle

Search Result 11, Processing Time 0.027 seconds

Architectural Model of Integrated Simulation Environment for the M&S Based Design of Unmanned Ground Combat Vehicle (M&S기반 무인지상전투차량 설계를 위한 통합모의실험환경 아키텍처모델)

  • Choi, Sang Yeong;Park, Jin Ho;Park, Kang
    • Korean Journal of Computational Design and Engineering
    • /
    • v.20 no.3
    • /
    • pp.221-229
    • /
    • 2015
  • M&S (Modeling & Simulation) based design is widely accepted for the development of the future weapon system with better performance in a cheaper and faster way. Integrated simulation environment (ISE) is needed for the M&S based design. On the ISE, system engineers can not only verify design options but also validate system requirements. In this paper, we propose architectural models of the integrated simulation environment (ISE) which incorporates mission effectiveness M&S (Modeling & Simulation), system performance M&S, the optimization model of integrated performances, digital mockup and virtual prototype. The ISE architectural models may be used to implement the ISE for the development of the future unmanned ground combat vehicle.

Rotational Drive-Versus-Quality and Video Compression-Versus-Delay Analysis for Multi-Channel Video Streaming System on Ground Combat Vehicles (지상 전투 차량을 위한 다채널 영상 스트리밍 시스템의 회전 구동 대비 품질과 압축 대비 지연 분석)

  • Yun, Jihyeok;Cho, Younggeol;Chang, HyeMin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.31-40
    • /
    • 2021
  • The multi-channel video streaming system is an essential device for future ground combat vehicles. For the system, the application of digital interfaces is required instead of the direct analog method to support selectable multiple channels. However, due to the characteristics of the digital interfaces that require en/decoding and signal conversion, the system should support the ability to adapt to quality and delay requirements depending on how video data is utilized. To support addressed issue, this study designs and emulates the multi-channel compressed-video streaming system of ground combat vehicle's fire control system based on commercial standards. Using the system, this study analyzes the quality of video according to the rotational speed of the acquisition device and Glass-to-Glass (G2G) delay between video acquisition and display devices according to video compression rates. Through these experiments and analysis, this paper presents the design direction of the system having scalability on the latest technology while providing high-quality video data streaming flexibly.

A Study on the Direction of Development and Need Analysis on Robot Providing for Future Combat (미래전투에 대비한 로봇 요구분석과 개발방향에 대한 연구)

  • Kwon, Oh-Sang
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.5-13
    • /
    • 2005
  • The use of robot is no longer limited in the industrial scene, and becoming expanded toward many aspects of human life. Especially, military robot closely concerned with our lives seems to advance more and more in the future. As a need analysis for developing military robot, this project conducted a poll about Unmanned Reconnaissance Robot, and on the basis of the result, I suggested 3 directions of developing UGV(Unmanned Ground Vehicle) suitable to strategic environment of Korea.

Interrelation Analysis of UGV Operational Capability and Combat Effectiveness using AnyLogic Simulation (애니로직 시뮬레이션을 이용한 무인지상차량 운용성능과 전투효과의 연관성 분석)

  • Lee, Jaeyeong;Shin, Sunwoo;Kim, Junsoo;Bae, Sungmin;Kim, Chongman
    • Journal of Applied Reliability
    • /
    • v.15 no.2
    • /
    • pp.131-138
    • /
    • 2015
  • In modern warfare, the number of unmanned systems grow faster than any other weapon systems. Therefore, it is very important to predict and measure the combat effectiveness (CE) of unmanned weapon systems in battlefield for deciding defense budget to acquire those systems. In general, quantitative calculation of weapon effectiveness under complicated battlefield is difficult based on the future network centric warfare. Hence, many papers studied how to measure the combat effectiveness and tried to study a lot of related issues about it. However, there are few papers dealing with the relationship between the UGV (Unmanned Ground Vehicle)'s performance and CE in a ground battlefield. In this paper, we do the sensitivity analysis based on a given scenario in a small unit battle. In order to do that, we developed simulation model using AnyLogic and changed the input parameters such as detection and hitting probabilities. We also assess the simulation outputs according to the variation of input parameters. The MOE used in this simulation model output is survival ratio for Blue force. We hope that this paper will be useful to find which input variable is more effective to increase combat effectiveness in a small unit ground battlefield.

Analysis of UGV Communication Effectiveness focused on Message Complexity (메시지 복잡도를 중심으로한 UGV 통신효과 분석)

  • Chang, YooSang;Shin, SunWoo;SEO, DaYoon;Lee, JaeYeong;Kim, ChongMan;Yoo, CheolWoo;BAE, SungMin
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.3
    • /
    • pp.503-520
    • /
    • 2017
  • Purpose: In the near future, it is expected that UGV(unmanned ground vehicle) will be put into battle due to IT technology and unmanned technology development. In this study, we analyze the combat effectiveness considering communication effect where complex combat information and commands are transmitted. Methods: We use ABM(agent-based modeling) and wireless channel module which provides sophisticated communication effect through geographic information and UGV performance. And UGV combat simulation using wireless channel module is used to grasp the combat effectiveness according to the number of packets, which is a unit for storing all information and commands having high complexity. Results: The result of this study is to derive the optimal number of packets which does not decrease the combat effectiveness and the number of lost tanks. The number of packet increases, the survival ratio of our tanks are decreased. Conclusion: In this study, we reveal that the communication success or failure could affect the combat effectiveness. Also, it helps develope the standard communication protocol between UGVs and could be applied to analyze the cost effectiveness analysis in UGV combat environment.

A Study on the Future Army's Development of Combined Combat System with Manned and Unmanned Forces (미래 육군의 유·무인복합 전투체계 발전방향에 관한 연구)

  • Sang-Hyuk Park;Seung-Pil Namgoong
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.295-299
    • /
    • 2023
  • In Korea, the birth rate is rapidly decreasing in the 21st century. Accordingly, if the current military service and personnel system are maintained, it will be difficult to maintain even the number of the Army reduced to 365,000. Nevertheless, the Army has a mission to protect the country from external aggression as the last bastion of national defense. To fulfill this mission, there are ways to improve the military service and personnel system, but there are ways to maximize individual combat power to create one warrior that is worth a hundred and overcome the insufficient number of troops through superior mobility to the enemy. This study studied how to solve the shortage of troops as well as strengthen combat power through a combined combat system that can maximize individual combat power and mobility by applying the latter concept, and further analyzed the future battle environment and suggested the developmental direction of the army's combined combat system.

A Study on the Initial Design Method for an Effective Acquisition of Future Ground Combat Vehicles (미래지상전투차량의 효과적 획득을 위한 초기설계기법에 관한 연구)

  • Kim, Hee-young;Kwon, Seung Man;Lee, Kyu Noh
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.41-49
    • /
    • 2017
  • In the acquisition program, the conceptual design is the most important step toward specifying the military objectives, establishing requirements and determining future developmental directions, of a target system. However, if both the requirements and directions are incorrectly set due to the lack of development experiences and literature backgrounds in the target systems, such as future ground combat vehicles, it may become a major risk in the future design phases and the entire acquisition program. In order to correct these errors in the future phases, time, effort and cost are required. Therefore, it is necessary to reduce the errors that occur in the initial stages to effectively acquire the future ground combat vehicles. This paper describes the initial design method for verifying the requirements and the developmental directions and estimating the system performance at the conceptual design through the system-level physical modeling and simulation (M&S) and the target system performance analysis. The system-level physical M&S use cutting-edge design tools, model-based designs and geometric-based designs. The system performance estimation is driven from the results of the system-level physical M&S and the specialized system analysis software.

Strategic Operation Method of Military Robot System for Future Warfare (미래 전투를 위한 군사 로봇 시스템의 전략적 운용 방법)

  • Lee, Jun-Pyo;Cho, Han-Jun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.169-170
    • /
    • 2012
  • 현대전에서는 인명 손실을 최소화하는 동시에 타 전투체계와의 연계를 통해 부여된 임무를 성공적으로 이끌어 내기 위해 무인로봇을 활발하게 이용하고 있다. 본 논문에서는 미래 전장에서 중심 역할을 수행할 것으로 기대되는 무인로봇과 통제장치의 기능을 제안한다. 통제장치는 디지털 지도를 기반으로 무인로봇의 위치를 전시하는 동시에 특정 위치로의 자율 이동 명령을 내리게 하는 인터페이스이다. 통제장치에서 무인로봇의 실시간 이동 간에 디지털 지도 기반 가시선(line of sight) 분석을 수행함으로써 통신 가능지역 식별 및 중계기를 통한 통신 가능 영역 식별을 용이하게 한다. 제안한 무인로봇과 통제장치를 통해 전장 환경에서 부여된 작전을 성공적으로 이끄는데 주된 역할을 수행할 것으로 기대한다.

  • PDF

Performance Enhancement of Virtual War Field Simulator for Future Autonomous Unmanned System (미래 자율무인체계를 위한 가상 전장 환경 시뮬레이터 성능 개선)

  • Lee, Jun Pyo;Kim, Sang Hee;Park, Jin-Yang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.10
    • /
    • pp.109-119
    • /
    • 2013
  • An unmanned ground vehicle(UGV) today plays a significant role in both civilian and military areas. Predominantly these systems are used to replace humans in hazardous situations. To take unmanned ground vehicles systems to the next level and increase their capabilities and the range of missions they are able to perform in the combat field, new technologies are needed in the area of command and control. For this reason, we present war field simulator based on information fusion technology to efficiently control UGV. In this paper, we present the war field simulator which is made of critical components, that is, simulation controller, virtual image viewer, and remote control device to efficiently control UGV in the future combat fields. In our information fusion technology, improved methods of target detection, recognition, and location are proposed. In addition, time reduction method of target detection is also proposed. In the consequence of the operation test, we expect that our war field simulator based on information fusion technology plays an important role in the future military operation significantly.

An Optimal Path Generation Method considering the Safe Maneuvering of UGV (무인지상차량의 안전주행을 고려한 최적경로 생성 방법)

  • Kwak, Kyung-Woon;Jeong, Hae-Kwan;Choe, Tok-Son;Park, Yong-Woon;Kwak, Yoon-Keun;Kim, Soo-Hyun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.951-957
    • /
    • 2010
  • An optimal path generation method considering the safety of UGV(Unmanned Ground Vehicle) is proposed and demonstrated through examples. Among various functions of UGV, real-time obstacle avoidance is a key issue to realize realistic scenario in FCS(Future Combat Systems). A two-dimensional narrow corridor environment is considered as a test field. For each step of UGV movement, two objectives are considered: One is to minimize the distance to the target and the other to maximize the distance to the nearest point of an obstacle. A weighted objective function is used in the optimization problem. Equality and inequality constraints are taken to secure the UGV's dynamics and safety. The weighting factors are controlled by a fuzzy controller which is constructed by a fuzzy rule set and membership functions. Simulations are performed for two cases. First the weighting factors are considered as constant values to understand the characteristics of the corresponding solutions and then as variables that are adjusted by the fuzzy controller. The results are satisfactory for realistic situations considered. The proposed optimal path generation with the fuzzy control is expected to be well applicable to real environment.