• Title/Summary/Keyword: Fusion resistance

Search Result 252, Processing Time 0.037 seconds

Studies on the Protoplast Fusion of Lactobacillus casei (Lactobacillus casei 의 세포융합에 관한 연구)

  • Baek, Young-Jin;Min Yoo;Kim, Young-Kee;Bae, Hyeong-Suk;Kim, Hyun-Uk
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.3
    • /
    • pp.265-270
    • /
    • 1986
  • The best conditions for the protoplast fusion of Lactobacillus casei have been searched for in this study. Antibiotic resistance was used as the selective marker for enumerating and selecting the recombinants. Antibiotic resistant mutants were isolated after treating cells with N-methyl-N'-nitro-N'-nitrosoguanidine. High frequency fusion of protoplasts of L. casei strains were obtained in the presence of 40% (wt/vol) polyethylene glycol 4,000 after 1 min at 3$0^{\circ}C$ at around neutral pH. Spontaneous mutations of drug-resistance of L. casei were two or three orders lower than the recombination frequency. Recombination frequencies were about 10$^{-4}$ per parent cells employed.

  • PDF

Thermal-Fluid Coupled Analysis for Injection Molding Process by Considering Thermal Contact Resistance (사출금형의 열접촉 저항을 고려한 성형과정의 열-유동 연계해석)

  • Sohn, Dong-Hwi;Kim, Kyung-Min;Park, Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1627-1633
    • /
    • 2011
  • Injection molds are generally fabricated by assembling a number of plates in which the core and cavity components are assembled. This assembled structure has a number of contact interfaces where the heat transfer characteristics are affected by thermal contact resistance. In previous studies, numerical approaches were investigated to predict the effect of thermal contact resistance on the temperature distribution of injection molds. In this study, thermal-fluid coupled numerical analyses are performed to take into account the thermal contact effect on the numerical evaluation of the mold filling characteristics. Comparisons with experimental results show that the proposed coupled analysis provides more reliable results than the conventional analyses in predicting the mold filling characteristics by taking into account the effect of thermal contact resistance inside the injection mold assembly.

Assesment of Renewable Energy (신재생 에너지 고찰)

  • Lee, Sang-Heon;Koo, Kyoung-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2071-2072
    • /
    • 2011
  • Withstand voltage characteristics of the nanocomposites, as a material with excellent abrasion resistance and water resistance, low shrinkage upon curing with moisture even in very good adhesion, workability is not lost. In this study, the fusion of nanoparticles and the high functionality epoxy nano-composite material produces the electricity. Degeneration of the unit based on this power structure and breakdown characteristics, efficiency and cross-measurement system as closely related organisms that can be applied to the power plant electrical efficiency of the nano-composite material is designed to develop skills.

  • PDF

Synthesis and Structural Properties of YBa2Cu3O7-x Films/ZnO Nanorods on SrTiO3 Substrates

  • Jin, Zhenlan;Park, C.I.;Song, K.J.;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.169-169
    • /
    • 2012
  • The high-temperature superconductor YBa2Cu3O7-x (YBCO) have attached attentions because of a high superconducting transition temperature, low surface resistance, high superconducting critical current density (Jc), and superior superconducting capability under magnetic field. Moreover, the Jc of YBCO superconductors can be enhanced by adding impurities to the YBCO films for vortex-pinning. Understanding and controlling pinning centers are key factors to realize high Jc superconductors. We synthesized vertically-aligned ZnO nanorods on SrTiO3 (STO) substrates by catalyst-free metal-organic chemical vapor deposition (MOCVD), and subsequently, deposited YBCO films on the ZnO nanorods/STO templates using pulsed laser deposition (PLD). The various techniques were used to analyze the structural and interfacial properties of the YBCO/ZnO nanorods/STO hybrid structures. SEM, TEM, and XRD measurements demonstrated that YBCO films on ZnO nanorods/STO were well crystallized with the (001) orientation. EXAFS measurements from YBCO/ZnO nanorods/STO at Cu K edge demonstrated that the local structural properties around Cu atoms in YBCO were quite similar to those of YBCO/STO.

  • PDF

Development of PCR-based markers for discriminating Solanum berthaultii using its complete chloroplast genome sequence

  • Kim, Soojung;Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.207-216
    • /
    • 2018
  • Solanum berthaultii is one of the wild diploid Solanum species, which is an excellent resource in potato breeding owing to its resistance to several important pathogens. On the other hand, sexual hybridization between S. berthaultii and S. tuberosum (potato) is limited because of their sexual incompatibility. Therefore, cell fusion can be used to introgress various novel traits from this wild species into the cultivated potatoes. After cell fusion, it is crucial to identify fusion products with the aid of molecular markers. In this study, the chloroplast genome sequence of S. berthaultii obtained by next-generation sequencing technology was described and compared with those of five other Solanum species to develop S. berthaultii specific markers. A total sequence length of the chloroplast genome is 155,533 bp. The structural organization of the chloroplast genome is similar to those of the five other Solanum species. Phylogenic analysis with 25 other Solanaceae species revealed that S. berthaultii is most closely located with S. tuberosum. Additional comparison of the chloroplast genome sequence with those of the five Solanum species revealed 25 SNPs specific to S. berthaultii. Based on these SNPs, six PCR-based markers for differentiating S. berthaultii from other Solanum species were developed. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. berthaultii.

Synthesis and Structural Properties of $VO_2$ Thin Films

  • Jin, Zhenlan;Park, Changin;Hwang, Inhui;Han, S.W.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.190.2-190.2
    • /
    • 2013
  • Vanadium dioxide ($VO_2$) has been widely attracted for academic research and industrial applications due to its metal-insulator transition (MIT) temperature close to room temperature. We synthesized VOx film on (0001) sapphire substrate with vanadium target (purity: 99.9%) using DC magnetron sputtering in Ar ambience at a pressure of $10^{-3}$ Torr at $400{\sim}700^{\circ}C$. The VOx film subsequently was annealed at difference temperatures in ambience of Ar and $O_2$ gas mixture at $60{\sim}800^{\circ}C$. The structural properties of the films were investigated using scanning electron microscopic (SEM), x-ray diffraction (XRD) and x-ray absorption fine structure (XAFS) measurements. SEM reveal that small grains formed on the substrates with a roughness surface. XRD shows oriented $VO_2$(020) crystals was deposited on the $Al_2O_3$(006) substrate. From I-V measurements, the electric resistance near its MIT temperature were dramatically changed by ${\sim}10^4$ during heating and cooling the films. We will also discuss the temperature-dependent local structural changes around vanadium atoms using XAFS measurements.

  • PDF

Effect of Sn Addition on Creep Resistance of AZ91-0.4%Ca Alloy (AZ91-0.4%Ca 합금의 크립저항성에 미치는 Sn 첨가의 영향)

  • Jun, Joong-Hwan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.4
    • /
    • pp.185-190
    • /
    • 2014
  • The influences of small amount of Sn addition on microstructure and creep resistance of AZ91-0.4%Ca alloy have been investigated. The microstructure of the AZ91-0.4%Ca alloy was characterized by ${\alpha}$-(Mg) dendrite cells surrounded by eutectic ${\beta}(Mg_{17}Al_{12})$ and $Al_2Ca$ phases. The 0.5%Sn addition resulted in the formation of rod-shaped CaMgSn particles with the extinction of $Al_2Ca$. The Sn-containing alloy exhibited better creep resistance below $175^{\circ}C$, but the tendency was reversed above $200^{\circ}C$. The reason was discussed in relation to the change in thermal stability of ${\beta}$ phase in response to the Sn addition.

Influence of Series Resistance and Interface State Density on Electrical Characteristics of Ru/Ni/n-GaN Schottky structure

  • Reddy, M. Siva Pratap;Kwon, Mi-Kyung;Kang, Hee-Sung;Kim, Dong-Seok;Lee, Jung-Hee;Reddy, V. Rajagopal;Jang, Ja-Soon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.5
    • /
    • pp.492-499
    • /
    • 2013
  • We have investigated the electrical properties of Ru/Ni/n-GaN Schottky structure using current-voltage (I-V) and capacitance-voltage (C-V) measurements at room temperature. The barrier height (${\Phi}_{bo}$) and ideality factor (n) of Ru/Ni/n-GaN Schottky structure are found to be 0.66 eV and 1.44, respectively. The ${\Phi}_{bo}$ and the series resistance ($R_S$) obtained from Cheung's method are compared with modified Norde's method, and it is seen that there is a good agreement with each other. The energy distribution of interface state density ($N_{SS}$) is determined from the I-V measurements by taking into account the bias dependence of the effective barrier height. Further, the interface state density $N_{SS}$ as determined by Terman's method is found to be $2.14{\times}10^{12}\;cm^{-2}\;eV^{-1}$ for the Ru/Ni/n-GaN diode. Results show that the interface state density and series resistance has a significant effect on the electrical characteristics of studied diode.