• Title/Summary/Keyword: Fusion Scheme

Search Result 233, Processing Time 0.019 seconds

Texture Image Fusion on Wavelet Scheme with Space Borne High Resolution Imagery: An Experimental Study

  • Yoo, Hee-Young;Lee , Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.3
    • /
    • pp.243-252
    • /
    • 2005
  • Wavelet transform and its inverse processing provide the effective framework for data fusion. The purpose of this study is to investigate applicability of wavelet transform using texture images for the urban remote sensing application. We tried several experiments regarding image fusion by wavelet transform and texture imaging using high resolution images such as IKONOS and KOMPSAT EOC. As for texture images, we used homogeneity and ASM (Angular Second Moment) images according that these two types of texture images reveal detailed information of complex features of urban environment well. To find out the useful combination scheme for further applications, we performed DWT(Discrete Wavelet Transform) and IDWT(Inverse Discrete Wavelet Transform) using texture images and original images, with adding edge information on the fused images to display texture-wavelet information within edge boundaries. The edge images were obtained by the LoG (Laplacian of Gaussian) processing of original image. As the qualitative result by the visual interpretation of these experiments, the resultant image by each fusion scheme will be utilized to extract unique details of surface characterization on urban features around edge boundaries.

Cooperative Spectrum Sensing using Kalman Filter based Adaptive Fuzzy System for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.1
    • /
    • pp.287-304
    • /
    • 2012
  • Spectrum sensing is an important functionality for cognitive users to look for spectrum holes before taking transmission in dynamic spectrum access model. Unlike previous works that assume perfect knowledge of the SNR of the signal received from the primary user, in this paper we consider a realistic case where the SNR of the primary user's signal is unknown to both fusion center and cognitive radio terminals. A Kalman filter based adaptive Takagi and Sugeno's fuzzy system is designed to make the global spectrum sensing decision based on the observed energies from cognitive users. With the capacity of adapting system parameters, the fusion center can make a global sensing decision reliably without any requirement of channel state information, prior knowledge and prior probabilities of the primary user's signal. Numerical results prove that the sensing performance of the proposed scheme outperforms the performance of the equal gain combination based scheme, and matches the performance of the optimal soft combination scheme.

A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization (쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기)

  • Cho, Youngwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

Predictive Spatial Data Fusion Using Fuzzy Object Representation and Integration: Application to Landslide Hazard Assessment

  • Park, No-Wook;Chi, Kwang-Hoon;Chung, Chang-Jo;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.233-246
    • /
    • 2003
  • This paper presents a methodology to account for the partial or gradual changes of environmental phenomena in categorical map information for the fusion/integration of multiple spatial data. The fuzzy set based spatial data fusion scheme is applied in order to account for the fuzziness of boundaries in categorical information showing the partial or gradual environmental impacts. The fuzziness or uncertainty of boundary is represented as two kinds of fuzzy membership functions based on fuzzy object concept and the effects of them are quantitatively evaluated with the help of a cross validation procedure. A case study for landslide hazard assessment demonstrates the better performance of this scheme as compared to traditional crisp boundary representation.

Analysis and Optimization of Cooperative Spectrum Sensing with Noisy Decision Transmission

  • Liu, Quan;Gao, Jun;Guo, Yunwei;Liu, Siyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.4
    • /
    • pp.649-664
    • /
    • 2011
  • Cooperative spectrum sensing (CSS) with decision fusion is considered as a key technology for tackling the challenges caused by fading/shadowing effects and noise uncertainty in spectrum sensing in cognitive radio. However, most existing solutions assume an error-free decision transmission, which is obviously not the case in realistic scenarios. This paper extends the general decision-fusion-based CSS scheme by considering the fading/shadowing effects and noise corruption in the common control channels. With this more practical model, the fusion centre first estimates the local decisions using a binary minimum error probability detector, and then combines them to get the final result. Theoretical analysis and simulation of this CSS scheme are performed over typical channels, which suggest some performance deterioration compared with the pure case that assumes an error-free decision transmission. Furthermore, the fusion strategy optimization in the proposed cooperation model is also investigated using the Bayesian criteria. The numerical results show that the total error rate of noisy CSS is higher than that of the pure case, and the optimal values of fusion parameter in the counting rule under both cases decrease as the local detection threshold increases.

A Cooperative Spectrum Sensing Scheme Using Fuzzy Logic for Cognitive Radio Networks

  • Thuc, Kieu-Xuan;Koo, In-Soo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.289-304
    • /
    • 2010
  • This paper proposes a novel scheme for cooperative spectrum sensing on distributed cognitive radio networks. A fuzzy logic rule - based inference system is proposed to estimate the presence possibility of the licensed user's signal based on the observed energy at each cognitive radio terminal. The estimated results are aggregated to make the final sensing decision at the fusion center. Simulation results show that significant improvement of the spectrum sensing accuracy is achieved by our schemes.

Control of Mobile Robot Navigation Using Vision Sensor Data Fusion by Nonlinear Transformation (비선형 변환의 비젼센서 데이터융합을 이용한 이동로봇 주행제어)

  • Jin Tae-Seok;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.304-313
    • /
    • 2005
  • The robots that will be needed in the near future are human-friendly robots that are able to coexist with humans and support humans effectively. To realize this, robot need to recognize his position and direction for intelligent performance in an unknown environment. And the mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. Notice that in the conventional fusion schemes, the measurement is dependent on the current data sets only. Therefore, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this research, instead of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the accurate measurement. As a general approach of sensor fusion, a UT -Based Sensor Fusion(UTSF) scheme using Unscented Transformation(UT) is proposed for either joint or disjoint data structure and applied to the landmark identification for mobile robot navigation. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations and experiments. The newly proposed, UT-Based UTSF scheme is applied to the navigation of a mobile robot in an unstructured environment as well as structured environment, and its performance is verified by the computer simulation and the experiment.

Efficient Data Transmission Scheme with Data Fusion inside a Smart Vessel (Data Fusion 기술을 활용한 스마트선박 내 효율적 데이터 전송 방안)

  • Kim, Yeon-Geun;Lee, Seong Ro;Jeong, Min-A;Kim, Beom-Mu;Min, Sang-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.11
    • /
    • pp.1146-1150
    • /
    • 2014
  • Recently, there has been interests in smart vessel technology, and it needs to consider an intelligent control system for efficient vessel manangement. In a smart vessel, however, it can cause a network overload due to a number of data transmission from a variety of sensor nodes and bridge nodes. In this letter, we propose an data transmission scheme with data fusion to reduce the number of traffic from the sensor nodes. Hence it can decrease network overload for intelligent vessel management.

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

Control of the Mobile Robot Navigation Using a New Time Sensor Fusion

  • Tack, Han-Ho;Kim, Chang-Geun;Kim, Myeong-Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.4 no.1
    • /
    • pp.23-28
    • /
    • 2004
  • This paper proposes a sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable accurate measurement, such as, distance to an obstacle and location of the service robot itself. In the conventional fusion schemes, the measurement is dependent on the current data sets. As the results, more of sensors are required to measure a certain physical parameter or to improve the accuracy of the measurement. However, in this approach, instead of adding more sensors to the system, the temporal sequence of the data sets are stored and utilized for the measurement improvement. Theoretical basis is illustrated by examples and the effectiveness is proved through the simulations. Finally, the new space and time sensor fusion(STSF) scheme is applied to the control of a mobile robot in an unstructured environment as well as structured environment.