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Abstract : This paper presents a methodology to account for the partial or gradual changes of

environmental phenomena in categorical map information for the fusion/integration of multiple spatial

data. The fuzzy set based spatial data fusion scheme is applied in order to account for the fuzziness of
boundaries in categorical information showing the partial or gradual environmental impacts. The
fuzziness or uncertainty of boundary is represented as two kinds of fuzzy membership functions based on

fuzzy object concept and the effects of them are quantitatively evaluated with the help of a cross validation

procedure. A case study for landslide hazard assessment demonstrates the better performance of this

scheme as compared to traditional crisp boundary representation.
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1. Introduction

Since the 1990s, there has been an increased concern
regarding the integrated analysis of multi-source/sensor
spatial data. Various remote sensing images represent
the spatial distribution of energy or physical
characteristics from the earth surface in different
wavelength ranges of the electromagnetic spectrum.
Other sources of spatial data may include topography,
some thematic maps of geology, geophysics,
geochemistry, vegetation, forest and soils of an
interested area. To make optimized decisions, better use

must be made of available information acquired from
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different sources. Since each source gives us partial
knowledge of the underlying phenomena, a single data
source may not provide all the information required for
decision making, while multiple data related to certain
phenomena may help in the extraction of more
information with higher accuracy and less uncertainty.
Geo-spatial data fusion is the formal framework that
expresses the means and tools for the alliance of data
originating from different sources (Wald, 1999). Data
fusion is therefore by definition an enormous and
complex field, comprising issues ranging from
registration and pixel-level fusion of data for improving

the spatial resolution of space-borne imagery to decision
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level fusion by using previously computed information
stored in a GIS.

Much research has showed the advantage of spatial
data fusion over traditional single source/sensor analysis
in many application fields. In remote sensing
community, data fusion techniques for the classification
or change detection of remote sensing images have been
extensively investigated in the past years and many
papers that address the development of methodologies
for the use of multi-sensor/source image have been
reported (Lee et al., 1987; Serpico et al., 1996; Solberg
et al., 1996; Bruzzone et al., 1999; Solaiman et al.,
1999; Park et al., 2002). In geological applications,
much effort has been devoted to any prediction tasks
such as exploration of unknown geologic objects or
future geological hazard assessment (Moon, 1990;
Chung and Fabbri, 1998, 1999; Lee et al., 1999; Choi et
al., 2000; Chi et al., 2001). Since these applications deal
with the unknown future events using spatial data, we
will use the term “predictive spatial data fusion”
throughout this paper.

Unlike the situation where we only deal with data
from a single source, however, one of the most serious
problems faced in the multi-source/sensor data fusion is

the information content and relative reliability of each

categorical map

GIS database
containing
causal
factors

continuous map

evaluation of
performance

data set with respect to the application target. Since data
come from various sources/sensors, the data inevitably
have varying degrees of reliabilities for an observation
and it may be impossible to maintain a consistent scale
and the corresponding level of detail. For example, due
to a simplification of reality and uncertainty in mapping
procedures, the map boundary in categorical maps is
expressed as a crisp one. However, many categorical
maps have in reality indeterminate boundaries and the
inaccuracy in boundary positions, depending on the map
scale and resolution (Burrough and McDonnell, 1998;
Zhang and Kirby, 1999). Hence, such input information
regarding the relative reliabilities and uncertainties of the
sources should be properly assessed and accounted for
during data fusion processes.

While this concept of uncertainty analysis is well
known for statistics/geostatistics community (Heuvelink
et al., 1989; Goovaerts, 1997), it has only recently
received attention in geoscience. Related to the
boundary problem in categorical maps, vague or fuzzy
boundary representation has been put forward to
describe the uncertainties in the perspective of a GIS
(Wang and Hall, 1996; Cheng, 2002), but links between
this theory and spatial data fusion for environmental

impact research or geological hazard assessment have

generate
fuzry boundary

estimate

cross validation

fuzzy membership
functions

integrate
fuzzy membership
functions

perform

analysis

Fig. 1. Schematic diagram showing the processing flow used in this study.
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not until recently been elaborated.

The motivation of this paper is to alleviate this trend
by quantitatively investigating the uncertainties in spatial
data fusion with multiple geoscience data sets. The core
objective of this paper is to develop an effective scheme
for quantitative uncertainty analysis in predictive spatial
data fusion task. Among many types of uncertainties, of
particular interest are the effects of the uncertainties of
input data sets on the final integrated results.

In this paper, to account for the fuzziness or
uncertainties of boundary in categorical maps, we
propose and apply “fuzzy object” representation and
integration based on fuzzy set theory. First, we generate
the fuzzy boundary in categorical maps and the
corresponding prediction maps based on fuzzy set
theory. Then, the effects of fuzzy boundary on the final
prediction result are evaluated with the help of cross-
validation based on random spatial partitioning (Fig. 1).

This paper is structured as follows. In the next
section, we present the general concept of fuzzy object
representation and integration. Then, a case study for
landslide hazard assessment is presented to illustrate the
schemes proposed here. Finally, we conclude with

discussion and remarks.

2. Fuzzy Object Representation

Spatial data are the results of qualitative and
quantitative observation of spatial phenomena (Unwin,
1981). Among various types of spatial data, categorical
data are fundamental sources of spatial information in a
GIS. Categorical map information depicts the
distributions of discrete attributes in the form of
exhaustive, exclusive area units by crisp boundary lines
(e.g. geological map, soil map, forest map, etc).
Categorical map information is usually obtained by
digitizing, vectorization, and rasterization in a GIS.

Through these processes, the boundaries are represented

cartographically by precisely defined lines of zero width
(Mark and Csillag, 1989). However, such a
representation method has difficulties in dealing with,
for example, soil type mixture in a boundary position,
which cannot be properly described by a crisp boundary.
Many have in reality indeterminate boundaries and the
inaccuracy in boundary positions. Since they are
distributed continuously in space and time and
measurement procedures generally produce data with a
limited accuracy, the errors are compounded into the
database including the original maps themselves, and
lead to the uncertain description of geographical entities
depending on the map scales and resolutions of them.

Suppose we have two categorical maps: the scale of
one map is 1:25,000 and that of the other map is
1:50,000. If we assume that each map was mapped with
a line of standard width (e.g. 5Smm) and the resolution is
5m, a sharp boundary on a 1:25,000 scale map covers
125m and 25 pixels, and the boundary on a 1:50,000
scale map corresponds to 250m and 50 pixels. The
traditional approach ignores these uncertain or fuzziness
of boundary and useful information about the nature of
spatial change is lost.

In the traditional predictive spatial data fusion
approach, spatial data layers including original
categorical maps and categorized continuous maps are
first overlaid in order to generate the unique condition
sub-areas (Chung and Fabbri, 1993). The traditional
approach assumes that the boundaries of all maps have
zero width and no uncertainty. However, if categorized
maps are originated from maps having different scale
one another, the unique condition sub-areas inevitably
have uncertain or fuzzy boundary width, not zero width,
so these uncertainties may affect the final prediction
results.

Considering these conditions, we try to reflect the
fuzziness or uncertainty of boundaries into the predictive
spatial data fusion task. The fuzzy set theory can provide

us with a natural method of quantitatively processing
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(@)

multiple data sets to reflect natural phenomena or
irregular behaviors (Zadeh, 1965; Zimmermann, 1996).
First, in order to apply the proposed schemes, using
fuzzy concept, each class in certain categorical map is
converted to partial and multiple memberships of all the
candidate classes (Fig. 2(b)). By taking the maximum
membership value, final fuzzy object or boundary can
be generated (Fig. 2(c)). When we generate the multiple
memberships of all the classes, the scale and resolution
of the map can be considered. With a membership
grade, a boundary can describe not only the location but
also a change rate in phenomena at the boundary. A
membership grade can also be interpreted as the level of
plausibility or appropriateness to draw a boundary line at
the location indicated (Wang and Hall, 1996).

The proposed method consists in two steps for data
representation. Each step generates the fuzzy
membership function. However, the fuzzy membership
function for each step has the different meanings.

At the first step, we construct the fuzzy membership
functions that account for the fuzziness at boundary
positions. For the simplicity of explanation, suppose that
we have one categorical map having two categories or
attributes, E., Ey. In this study, we assume that each
category in categorical maps has a core area and a
transition zone. The fuzzy transition zone, d (= 2d;)
(Fig. 3(a)), can be computed from polygon boundaries
by considering the scale and resolution of the categorical

map. Then, in order to express the characteristics that

b
Fig. 2. (a) Crisp object, (b) fuzzy representation model, (c) fuzzy object.

©

show the external gradation of membership function
values from inside the transition zone to the outside, we
define two fuzzy membership functions (Mg, (x),

HE,,(x)) of two categories as a semantic function,

1 x<C-d
05~1 C-d<x<C
Mg, @={ 05 x=C m
0~05 C<x<C+dl
0 C+d <x
1 x<C-d;
0~05 C-di<x<C
ME,0)=1{ 05 x=C @
05~1 C<x<C+dl
0 C+d <x

The parameters of the membership function are
selected so that the locations corresponding to the
original drawn boundary are at the crossover value, 0.5.
The membership function is then applied so that those
sites well within the original boundary have a
membership value of 1, those sites inside, but near the
boundary have a membership value between 0.5 and 1,
and those sites outsides the boundary have a
membership value below 0.5 concomitant with their
distance from the boundary (Fig. 3(b)).

At the second step, we construct the fuzzy
membership function for landslide hazard index. In our
approach for landslide hazard assessment, a fuzzy model
is based on the conceptual idea of expressing the
landslide hazard in terms of possibility (fuzzy

membership function). In practice, construction of fuzzy
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Fig. 3. (a) Configuration of fuzzy transition zone, (b) fuzzy membership representation of boundary.

membership functions heavily depends on the problem
to be solved. Also, it is very difficult to construct a
certain type of semantic model (e.g. linear, bell-type,
etc), especially for categorical data. Our main objective
for landslide hazard assessment is to estimate relative
hazard level within the study area. That is, we wish to
separate the hazardous sub-areas affected by landslides
and the non-hazardous sub-areas not affected by
landslides. A difference in proportions of fixed size may
have greater importance when both proportions are close
to 0 or 1 than when they are near the middle of the
range. For example, suppose we compare two frequency
distribution functions of the hazardous and the non-
hazardous sub-areas in terms of the proportion of areas
within each class in spatial data. The difference between
0.010 and 0.001 may be more noteworthy than the
difference between 0.510 and 0.501. In such cases, the
ratio of proportions is also a useful descriptive measure.
By adopting this idea, in this paper, we constructed the
fuzzy membership functions by using likelihood ratio
{Agresti, 1990; Chung and Fabbri, 1998). The likelihood
ratio can highlight the difference between the frequency
distributions of the hazardous and the non-hazardous
sub-areas. The likelihood ratio ranges from zero to
infinity. The more the likelihood ratio exceeds 1, the
stronger the relationship between two patterns will be.

However, the fuzzy membership function value should

be a number in the range [0,1] with 1 representing full
membership and 0 non-membership. To rest the
likelihood ratio to the range [0,1], we used the following

logistic-type ratio relation.

MHi= 1+2q' (3)

where, y; is a fuzzy membership value and A; is an
likelihood ratio value.

After getting landslide hazard index functions
(LHIE”, LHIEcz), then the final fuzzy membership
functions which reflect the gradual variation of an
attribute over the boundary between two dissimilar map
units are obtained by computing a weighted estimate of
the relative hazard index values over the boundary zone,
considering the boundary membership functions of the
two polygons (Fig. 4).

2. LHIg * g,

=4 4
HrF(x) EI: " 1G]

where, prr(x) is a final landslide hazard index
membership function and a fuzzy membership function
for boundary.

After each data layer of target information denoted
from fuzzy theory is obtained, we can integrate them by
using fuzzy combination operators. Basic algebraic

relationships of inclusion, union, intersection,
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Fig. 4. Procedures for computing the final fuzzy membership function using fuzzy object representation.

complement and convexity are extended to fuzzy sets,
making applications of fuzzy set theory easier to real
problems. When two membership functions p,(x) and
ug(x) are combined, some useful fuzzy combination
operators for geological applications are as follows (An
et al., 1991; Moon, 1998; Chung and Fabbri, 2001).

Fuzzy OR
Hog(x) = MAX [p,(x), ng(x)] &)
Fuzzy AND
Hanp®) = MIN [, (x), py(x)] )
Fuzzy Algebraic Sum

2
Hsun() = 1= TT (i) M
Fuzzy Algebraic Product

2

Meropucr (X) = I} Hix) 8)

Fuzzy y operator

100 = [ 1" X [Mppoper 17, 0y 1 = 9)

Fuzzy bounded sum operator

2
m®=MML§w®} (10)

3. Case Study

1) Study Area and Data Sets

For a case study, the Boeun area in Korea, which had
considerable landslide damage following heavy rain in
1998, was selected as the study area (Fig. 5). We used
some data sets from the spatial database that had been
constructed by our previous research (Chi et al., 2002).
Using the aerial photos taken before and after landslides
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occurrence and field verification, we upgraded the past
landslide scarp distributions. Finally, in total 459
landslides were mapped. The study area covers
approximately 62 km? and consists of 1720 x 1444
pixels, with a pixel size of 5Sm by 5m. The spatial
database consists of 6 layers. They are (1) the spatial
distribution of past landslide scarps; (2) slope; (3)
aspect; (4) forest type (1:25,000); (5) soil material
(1:25,000); and (6) geology (1:50,000). As we pointed
out in the introduction, the scales of spatial data sets are

inconsistent.

2) Data Representation and Integration

Based on fuzzy object concept and fuzzy set theory,
we constructed landslide hazard index functions for
quantitative landslide hazard assessment. The spatial
data sets consisted of categorical data and continuous
data. In the traditional landslide hazard research, any
continuous data was classified to obtain a categorical
map containing a few class labels. In this case, the
boundaries in categorical maps of slope and aspect have
the different intrinsic natures, compared to other

categorical maps. So we separately processed the

127d 39 05" E
36d 29" 59" N

127d 44° 58" E
36d 26 02" N

)

Fig. 5. (a) Location map of the study area, (b) landslide scar distributions draped over the shaded relief map.

categorical data sets and continuous data sets.

For representation of categorical maps, we applied
the fuzzy object concept. First, to account for the
fuzziness of boundaries, we generated the fuzzy
boundaries in categorical map. As a semantic fuzzy
membership function for fuzzy boundary, a half
Gaussian bell-type function was used. Then in the
transition zones, fuzzy landslide hazard index functions
based on likelihood ratio were calculated using a
weighted estimate over the boundary zone.

For representation of continuous maps, first we
applied the likelihood ratio functions. But instead of
converting them to categorical maps, we used original
continuous scale maps. For continuous data, the
likelihood ratio was based on two frequency distribution
functions of areas affected by past landslides and areas
not affected by past landslides. To compute the
empirical frequency distribution function, we have
employed the kernel method. The density estimation
based on kernel functions (also called the Parzen
window approach) is a well-known nonparametric
approach that has been shown to be able to provide an

asymptotic, unbiased, consistent estimate of the true
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(c) fuzzy membership function of a slope map.
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distribution (Parzen, 1962; Silverman, 1986). The kernel
method derives the empirical frequency distribution
function from the superposition of kernel functions
centered on data samples and acting as smoothing
operators. In our case, we apply this approach to
estimate two empirical frequency distributions by
adopting kernel functions of the Gaussian type. A value
2% of data range of the spread parameter in the
Gaussian kernel function was selected experimentally as
aresult of the training phase. Fig. 6 shows the likelihood
ratio function for the slope map. By taking a ratio, the
difference between two empirical frequency
distributions can be highlighted. Like representation of
categorical maps, the logistic-type ratio relation was
applied to convert the likelihood ratio to the fuzzy
membership function ranging from 0 to 1.

After preparing the landslide hazard index
membership functions of all input spatial data, we
integrated them using the fuzzy algebraic sum operator.
In a fuzzy set approach for spatial data fusion, it is not
easy to select an optimal fuzzy combination operator.
However, because main purpose of this paper is to
investigate the effectiveness of fuzzy object
representation, not to select the best combination
operator, we used the fuzzy algebraic sum operator

empirically.

3) Results

To investigate the impacts of the width of fuzzy
boundary on the prediction patterns, the procedure was
repeated for a series of transition zones having various
sizes (d; = 0, 6, 12, 24). If 4, is 0, it means that the
categorical map has a crisp boundary. The larger 4, is,
the wider the transition zone will be.

Once an experiment procedure has been obtained, the
extent to which it is valid should be evaluated. To
evaluate the prediction results quantitatively, we applied
the cross-validation approach based on random spatial

partitioning of past landslides. The analytical procedures

for cross-validation consist of 4 steps.

Step 1) The past landslides were randomly divided
into 2 disjoint sets of equal size n/2, where n is the total
number of past landslides (e.g. 459 in this study).

Step 2) The prediction maps were generated 2 times
using one group, each time with the remaining
occurrences held out as a validation set.

Step 3) Using rank order statistics, each prediction
map is expressed in terms of relative landslide hazard
values in the study area.

Step 4) we computed the prediction rate curve
(Chung and Fabbri, 1999; Chi er al., 2001) by
considering the prediction rates in all past landslides
from 2 prediction maps.

The cross-validation results using only 3 categorical
maps (forest type, soil type and geology) are shown in
Fig. 7 and Fig. 8. As expected, according to the increase
of the transition zone, the fuzzy membership functions
have gradual changes or smoothing effects. But in case
of d| =24, these effects are too much to find the original
features. Prediction rate is the measurement of how well
the prediction model predicts the distribution of future
landslides. To calculate the prediction rate, we first
counted the number of pixels of reference landslides in
the landslide hazard level whose value is larger than (1
minus a certain value). Then the number was divided by
the total pixel numbers of reference landslides in order
to obtain a normalized prediction rate. The prediction
rate curve is the cumulative version of the prediction
rate. It has the form y = function (x), as shown in Fig. 8.
Here, x, ranging from 0 to 1, is the percentage of relative
landslide hazard and corresponds to the legend in the
prediction map. Because landslide hazard has a ranking
equal sub-area in the landslide hazard map, it is the same
as the percentage of the study area used, and y is the
percentage of occurrences predicted within the most
favorable x of the study area. From Fig. 8, at the most
hazardous areas (e.g. from top 0% ~5%), prediction

rates are quite different. In case of the traditional crisp
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Fig. 7. Prediction maps using 3 categorical maps and group 1 landslide scars,
(a) d1=0, (b) d1=6, () d1=12, (d) d1=24, (e) hazard level. Black dots denotes the landslide scars.
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Cumalative portion of landslides
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Portion of the whole study area assigned as hazardous

Fig. 8. Prediction rate curve based on 3 categorical maps only.
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Fig. 9. Prediction maps using 3 categorical maps, 2 continuous maps and group 1 landslide scars,
(a) d;=0, {b) d1=6, (c) d1=12, (d) d1=24, (e) hazard level. Black dots denotes the landslide scars.
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Fig. 10. Prediction rate curve using 3 categorical maps and 2 continuous maps.
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boundary (d) =0), if we take the most hazardous 5% of
the area, then we estimate that 18.3% of landslides are
located in the area. On the other hand, as d; increases
from 6 to 12, at the most hazardous 5% areas, the
prediction rates are about 28.8% and 28.0%,
respectively. This improvement of the prediction rates
would be explained by the information content. Since
the use of fuzzy boundary would include useful
information about the nature of spatial change and
spatial context, this effect results in improvement of the
prediction powers. In case of d,=24, though its
prediction rate is higher than that of d,=0, it did not
show the highest prediction rate. A possible explanation
is that the original categorical features, especially small
size polygons, were smoothed too much and even
disappeared by large transition zone (Fig. 7). Especially,
if we assume that each map was mapped with a line of
5mm, a case of d,=12 represents a 1:25,000 scale map
with 5m resolution and a case of d;=24 corresponds to
the boundary on a 1:50,000 scale map. So the fuzzy
boundary of the forest type, soil material and geology
map would be represented well by setting d=12, d;=12
and d,=24, respectively. The experiment results partially
agree with the map scale.

Finally, we carried out the cross-validation procedure
using 3 categorical maps based on fuzzy boundary and 2
continuous maps (Fig. 9 and Fig. 10). When we added
the continuous maps to the modeling procedure, the
prediction results showed similar patterns and the
overall prediction rate was slightly improved. By adding
another maps telated to landslide occurrences, especially
the slope map, one of important factors for landslides, it
might affect the final prediction results. Compared to the
prediction results using only categorical maps, the
discrepancy of prediction rates was reduced. But the
order of the prediction capability is preserved. That is, in
case of d,=0, its prediction rate was the highest value
and that of d,=24 showed the worst result.

4. Conclusions

Fuzzy set theory allows the fusion of multiple spatial
data in landslide hazard assessment through fuzzy
membership function representation and combination
using a fuzzy operator. Especially, this paper has
incorporated fuzzy object representation into traditional
fuzzy set based spatial data fusion. This approach can
reflect the fuzziness of boundaries in categorical maps
showing the different environmental impacts in data
representation stage. Once fuzzy data representation had
been implemented, a cross-validation approach was
carried out in order to quantitatively investigate the
effect of the transition zones on the prediction rates. The
case study shows that use of fuzzy object and boundary
can improve the prediction results in terms of prediction
rates, compared to the traditional crisp boundary
approach, This approach also can consider the map scale
and resolution in the processing stage if a reasonable
assumption is adopted. In this study, since our
application target is to assess the relative landslide
hazard level, we empirically compare the results in
terms of prediction rates. Though it is still difficult to
select an optimal transition zone size, the scale and
resolution of the map can be a guideline. To strengthen
the situation here identified, more research will be

devoted to extensive experiments in several study areas.
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