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Abstract 
Spectrum sensing is an important functionality for cognitive users to look for spectrum holes 
before taking transmission in dynamic spectrum access model. Unlike previous works that 
assume perfect knowledge of the SNR of the signal received from the primary user, in this 
paper we consider a realistic case where the SNR of the primary user's signal is unknown to 
both fusion center and cognitive radio terminals. A Kalman filter based adaptive Takagi and 
Sugeno's fuzzy system is designed to make the global spectrum sensing decision based on the 
observed energies from cognitive users. With the capacity of adapting system parameters, the 
fusion center can make a global sensing decision reliably without any requirement of channel 
state information, prior knowledge and prior probabilities of the primary user's signal. 
Numerical results prove that the sensing performance of the proposed scheme outperforms the 
performance of the equal gain combination based scheme, and matches the performance of the 
optimal soft combination scheme.  
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1. Introduction 

Cognitive radio (CR) has appeared as a new design paradigm for the next-generation 
wireless network that aims to enhance the utilization of scarce electromagnetic radio spectrum 
by enabling dynamic spectrum access. The motivation for the design of CR communication 
systems comes from the fact that many portions of licensed spectrum are underutilized or 
neglected by licensed users. As a secondary user (who is unlicensed user), CR user (CU) is 
allowed to access a spectrum band unoccupied by the primary user (PU, who is licensed user) 
at a particular time and specific geographic location [1]. The frequency band that has been 
assigned to a PU who is not currently using it is called spectrum hole. Spectrum sensing is a 
critical task for CR in order to detect spectrum holes and identify spectrum access 
opportunities. Furthermore, during CU data transmission, periodic spectrum sensing must be 
performed to detect the sudden return of the PU transmission signal. Fig. 1 illustrates the 
process of using an idle channel (i. e., a spectrum hole) for data transmission in CR. 

 

 
Fig. 1. The process of using an idle channel for data transmission in CR. 

To avoid causing interference to the primary system, spectrum sensing must be efficient and 
reliable. Among spectrum sensing methods, energy detection is widely used to detect the 
present of the PU signal without any prior knowledge since it has very low implementation 
cost and admirable sensing performance [2][3][4]. However, when this method is applied to a 
standalone CU, due to time-varying natures of wireless channel (e.g., shadowing, fading), the 
CU may not be able to reliably distinguish between a spectrum hole and a deeply faded and 
shadowed PU signal [5]. To overcome this drawback, cooperative spectrum sensing has been 
proposed [6][7][8]. In cooperative spectrum sensing, the sensing information from different 
CUs are combined at the fusion center (FC) to make the global decision on the present status of 
PU signal. Consequently, the sensing accuracy is enhanced by the spatial diversity gain. Based 
on the Neyman-Pearson criterion, an optimal soft combination (OSC) scheme for cooperative 
spectrum sensing was derived in [6]. Results in the paper showed that the OSC reduces to the 
maximal-ratio combination (MRC) in low signal-to-noise ratio (SNR) regime, and reduces to 
the equal gain combination (EGC) in high SNR regime. In [7], an optimal linear cooperation 
framework for spectrum sensing was proposed. However, to implement algorithms in [7], the 
FC must have full knowledge of noise variance and SNR of the PU signal at all CUs to control 
the combining weights, which optimizes a modified deflection coefficient that characterizes 
the probability distribution function (pdf) of the global test statistic at the FC. A fuzzy 
inference system was proposed in [8] to make local soft spectrum sensing decision at CUs 
under the assumption that the SNR of the PU signal is known to CUs. Results in [8] showed 
that the sensing performance of the proposed scheme is comparable with the sensing 
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performance of the MRC based scheme while does not require sending SNR of the PU signal 
from CUs to the FC. 

It can be observed that most existing cooperative spectrum sensing schemes are based on the 
assumption that the SNR of the PU signal at the CU is perfectly known. However, in practice it 
is very difficult for a CU to exactly estimate SNR of the PU signal in a given spectrum band 
since there is no cooperation between the CU and the PU. Moreover, even if the CUs can 
estimate these parameters well, it is very expensive to transmit them along with local 
observations to the FC. To deal with these practical issues, in this paper an adaptive 
cooperative spectrum sensing scheme is proposed to detect spectrum holes accurately under 
the condition that the prior knowledge of the PU signal, the prior probability of the PU activity, 
and SNRs of the PU signal at CUs are not available. We consider the case that each CU in the 
CR network measures the energy of the received signal in the band of interest and then 
transmits its observation to the FC without any extra information. Data fusion at the FC is 
performed by using an adaptive Takagi and Sugeno’s fuzzy system where fuzzification 
parameters are adapted from received data via a Kalman filter. It means that the detection 
problem and the estimation problem are solved at the FC simultaneously and cooperatively. 
Therefore, the FC can make a global decision based on local observed energies without the 
knowledge of the SNRs of the PU signal at CUs. Numerical results clearly prove that the 
proposed scheme is comparable with the OSC scheme and also outperforms the EGC based 
scheme in terms of sensing accuracy.  

The organization of the paper is as follows: In Section 2, the system model and the adaptive 
cooperative spectrum sensing problem are described. An overview of energy detection is 
given in Section 3. The Kalman filter for estimating mean under hypothesis H1 of observed 
energy from local observation is derived in Section 4. We then propose an adaptive data fusion 
algorithm using Kalman filter and adaptive Takagi and Sugeno’s fuzzy system in Section 5. 
Numerical results are presented in Section 6. Finally, in Section 7, we conclude the paper. 

2. System Model 
Spectrum sensing can be formulated as a binary hypothesis testing problem as follows: 
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In this paper, we consider a CR network with M distributed CUs and a FC. According to the 
status of the PU, the received signal at each CU is given as: 
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where ( )ix t  represents the received signal at the i-th CU, ( )ih t  denotes the channel gain of 
the channel between the PU and the i-th CU, ( )s t  represents the signal transmitted by the PU, 
and ( )in t  is the additive white Gaussian noise (AWGN) at the i-th CU. Additionally, channel 
corresponding to different CUs are assumed to be independent, and further, all CUs and the 
PU share a common spectrum allocation.  
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The cooperative spectrum sensing is performed as shown in Fig. 2. For each sensing cycle, 
first, each CU calculates the energy of its received signal in the frequency band of interest. 
Local observed energies are then transmitted to the FC through a control channel. Finally, the 
FC combines local observations of individual CUs to make the global decision on the present 
status of the PU signal by an adaptive data fusion algorithm.  

The main objective of this paper is to design an adaptive data fusion algorithm at the FC 
under the practical condition that the prior knowledge of the PU signal, the prior probability of 
the PU activity, and SNRs of the PU signal at CUs are not available. 

 

 
Fig. 2. The cooperative spectrum sensing scheme. 

3. Overview of Energy Detection 
The energy detection method is optimal for detecting signals when prior knowledge of the 
signal is unavailable [2][3][4]. The block diagram of the energy detection method in the time 
domain is shown in Fig. 3. To measure the energy of the signal in the frequency band of 
interest, a band-pass filter (BPF) is first applied to the received signal, which is then converted 
into discrete samples with an analog-to-digital converter (A/D). 
 

 
Fig. 3. The block diagram of energy detection. 
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The local test static of the i-th CU using energy detection is: 
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where ( )ix j  is the j-th sample of received signal at the i-th CU and N is the number of samples, 
N = 2TW where T and W are detection time and signal bandwidth, respectively. 

Without loss of generality, we assume that the noise at each sample is a Gaussian random 
variable with zero mean and unit variance. If the PU signal is absent, iy  follows a central 
chi-square distribution with N degree of freedom; otherwise, iy follows a non-central 
chi-square distribution with N degree of freedom and a non-centrality parameter iNγ  [2]: 
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where  
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is the SNR of the PU signal at the i-th CU and the quantity 
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represents the transmitted signal energy over a sequence of N samples during each detection 
interval. 
When N is relatively large (e.g.  N > 250), iy  can be well approximated as a Gaussian random 
variable under both hypothesis 0H  and 1H  with a mean of 0i

m and 1i
m , and a variance of 0i

v  
and 1i

v  respectively, which are given as follows [2]: 
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An example of observed energy and its conditional means is shown in Fig. 4. In this example, 
the PU signal is binary phase shift keying (BPSK) signal [13], number of samples is N = 5, and 
SNR of the PU signal at the CU is γ = 10 dB.  
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Fig. 4. An example of the observed energy and its conditional means at a CU when the PU signal is 

BPSK signal, number of samples is N = 5, and SNR of the PU signal at the CU is γ = 10 dB. 

4. Derivation of Kalman Filter 
Kalman filter is a recursive algorithm which is used to obtain the optimal estimate of a random 
process from its measurement so that the mean-square estimation error is minimized [9][10]. 
Assume that the PU is taking transmission, and the SNR of the PU signal at each CU is 
changed slowly over time, hence the mean under hypothesis H1 of the observed energy at the 
arbitrary i-th CU is almost unchanged between two adjacent sensing cycles:  
 

( ) ( )1 11 .
i i

m k m k+ =                                                        (8) 
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Recall that when the PU signal is present, the observed energy iy  follows a Gaussian 
distribution with mean ( )1 1

i im N γ= +  and variance ( )1 2 1 2
i iv N γ= + . Therefore, the 

observed energy iy  can be considered as a noisy measurement of the mean 1i
m  as follows: 

 
( ) ( ) ( )1 ,

ii iy k m k w k= +                                                   (9) 
 

where iw  is the measurement noise, iw  follows a Gaussian distribution with mean zero and 
variance ( ) ( )1iiR k v k= .  

We assume that we have an initial estimate of 1i
m  at time slot k. This prior estimate is 

denoted as ( )1ˆ
i

m k− . The estimation error is defined as  
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and the associated error variance is: 
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A linear combination of the noisy measurement iy  and the prior estimate 1ˆ

i
m−  is used to 

obtain the posterior estimate of 1i
m in accordance with the equation 
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where ( )iK k  is combination factor, ( )iK k  > 0. 
The error variance associated with this estimate is 
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By substituting (12) into (13), we have  
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To find the particular ( )iK k  that minimizes the mean-square estimation error, we 
differentiate ( )iP k  with respect to ( )iK k . The result is: 
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By setting the derivate equal to zero, we get optimal combination factor called Kalman gain  
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Substitution of the Kalman gain into (14) leads to  
 

( ) ( )( ) ( )1 .i i iP k K k P k−= −                                                   (17) 
 

The updated estimate of 1i
m  is projected ahead via the transition equation (8). Thus, we have 
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The prior error variance associated with the prior estimate ( )1ˆ 1

i
m k− +  is obtained as 
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Equations (16), (12), (17), (18), and (19) bring us a Kalman filter recursive algorithm for 
estimating the mean under hypothesis H1 of the observed energy at each CU. Operation 
principle of this algorithm is summarized in Fig. 5. 
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Fig. 5. Kalman filter loop for estimating mean under hypothesis H1 of observed energy. 

 We see that in order to obtain optimal estimate 1ˆ
i

m of the conditional mean 1i
m  from the 

observed energy iy , we firstly give the Kalman filter algorithm our prior estimate ( )1ˆ 1
i

m−  and 

its error ( )1iP−  based on our knowledge about the systems. Kalman filter loop will output 

estimate 1ˆ
i

m  by an optimal linear combination of the prior estimate 1ˆ
i

m− and the noisy 

measurement iy . 

5. Adaptive Data Fusion at the FC 
Based on local observations received from CUs, the FC makes the global spectrum sensing 
decision by using a Kalman filter based adaptive fuzzy system as illustrated in Fig. 6. 
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Fig. 6. Adaptive data fusion at the FC. 

5.1 Making Global Decision 
Fuzzy logic is known as a simple way to obtain the solution to a problem based on imprecise, 
noisy, and incomplete input information. To capture dynamic system behavior with low 
computation complexity, adaptive Takagi and Sugeno's fuzzy logic system is used due to its 
adaptability to the changing environment so that the desired performance can be achieved [11]. 
Takagi and Sugeno's fuzzy logic system was proposed by Takagi and Sugeno [12] to obtain a 
compact system equation. Instead of considering fuzzy IF-THEN rules whose IF and THEN 
parts are fuzzy, Takagi and Sugeno proposed to use the fuzzy IF-THEN rules whose IF part is 
fuzzy, but whose THEN part is crisp. As a result, the output of Takagi and Sugeno’s fuzzy 
system is just a weighted average over all rules, and the computation cost is reduced 
significantly.  

Let 1ˆ
i

m  and 1̂i
v  be the estimate of 1i

m and 1i
v , respectively. Each observed energy is 

fuzzified by two fuzzy sets, namely Low and High. The membership functions recommended 
in [8] are applied for fuzzy sets Low and High as follows: 
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The shapes of these functions are illustrated in Fig. 7.  
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Fig. 7. Membership functions of fuzzy sets. 

Based on the fuzzified energy, the inference rules are used to gain information on the present 
status of the PU signal. Let denote ipd be the private decision which reflects the presence 
possibility of the PU signal based on the observation of the i-th CU. Then, the fuzzy inference 
rule set can be proposed as follows: 
• Rule 1: IF (yi is Low) THEN ( ipd = minpd ), 
• Rule 2: IF (yi is High) THEN ( ipd  = maxpd ). 
where minpd  and maxpd  are lower and upper bounds of private decisions, for 1 i M≤ ≤ .  
The defuzification procedure is taken by weighted average [11] as follows: 
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To ensure that the private decision ipd takes values in a symmetric domain [-1, 1], we set 

1minpd = −  and 1maxpd = , where 1ipd = −  indicates that the PU signal is certainly absent and 
1ipd =  indicates that the PU signal is certainly present. Hence, the private decisions are 

simplified as: 
 

( ) ( )
( ) ( )

.Low i High i
i

Low i High i

y y
pd

y y
µ µ
µ µ
− +

=
+

                                              (23) 

 
The global spectrum sensing decision is defined as: 
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Based on private decisions obtained from the defuzification procedure, the global decision is 
then made by applying a majority rule as follows:  
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5.2 Adapting Parameters 
At each sensing cycle, the Kalman filter algorithm derived in Section 4 will be performed to 
adjust fuzzification parameters for the next sensing cycle if the PU signal is declared to be 
present. In the first sensing cycle, the data fusion algorithm is performed with initial values set 
for these parameters: ( )1ˆ 1 (1 )

i minm N γ= +  and ( )1̂ 1 (1 2 )
i minv N γ= + , for 1 i M≤ ≤ , where 

minγ  is a pre-determined parameter denoting minimal SNR of the PU signal at CUs. The prior 
estimates and their associated error for Kalman filter are initialized as: ( )1ˆ 1 (1 )

i minm N γ− = + , 

( ) ( )2
max min1iP N γ γ− = − , for 1 i M≤ ≤ , where maxγ  is a pre-determined parameter denoting 

the maximal SNR of the PU signal at CUs. 
After that, in each sensing cycle, if current global decision 0 1u = , the Kalman filter 

algorithm is implemented to update 1ˆ
i

m 's from current observed energies iy 's, for 1 i M≤ ≤ , 
using equations (16), (12), (17), (18), and (19). Estimated SNR of PU signal at each CU is then 
calculated according to the estimated mean under hypothesis H1 as: 
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ˆ 1.i
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m
N

γ = −                                                       (26) 

 
Hence, the estimate of conditional variance under hypothesis H1 of observed energy at each 
CU is obtained as follows: 
 

( )1 1늿 2 2 .
i i

v m N= −                                                   (27) 
 

The variance of measurement error is adapted accordingly as: 
 

1̂ .
iiR v=                                                              (28) 

 
In conclusion, the adaptive data fusion algorithm at the FC can be summarized as follows: 
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Step 2: Poll local observations iy , for 1 i M≤ ≤  
Step 3: Calculate private decisions ipd 's 
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Step 4: Make global decision u0: 
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Step 5: If 0 1u =  then perform Kalman filter to update fuzzification parameters: 
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for 1 i M≤ ≤ . 
Step 6: Go to step 2 for the next sensing cycle. 

6. Simulation Results 
To evaluate the performance of the proposed spectrum sensing scheme, Monte-Carlo 
simulations are carried under following conditions: 
• The number of CUs is M = 5. 
• The PU signal is likely-equally BPSK signal [13] with prior probabilities

0 1Pr{ } Pr{ } 0.5H H= = .  
• The noises at CUs are Gaussian with zero mean and unit variance. 
• The number of samples N is 300. 

The proposed adaptive data fusion algorithm is implemented with following initial values 
for pre-determined parameters:     

• minγ  = -30 dB. 
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• maxγ  = 20 dB.  
Firstly, the sensing performance of the proposed scheme, in terms of its receiver operating 

characteristic (ROC), is evaluated under non-fading, Rayleigh fading, and Log-normal 
shadow fading channels. Rayleigh fading occurs when the PU signal experiences a 
Non-Line-of-Sight multi-path channel. Under Rayleigh fading environment, the received 
signal amplitude follows a Rayleigh distribution, and hence the SNR of the PU signal at the 
CU follows an exponential distribution whose pdf is given by: 
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γγ γ

γ
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where iγ  is mean SNR value at the i-th CU [14][15]. 
Under log-normal shadow fading environment [16], the SNR of the PU signal at CUs follows 
a Log-normal distribution whose pdf  is given by: 
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where iσ is standard deviation of the SNR at the i-th CU. 
In this simulation, we assume that all CUs suffer independent and identically distribution 
Rayleigh/Log-normal shadow fading channel with mean SNRs of PU signal at CUs are -16, 
-14, -12, -10 and -8 dB, respectively, and 6 dB of standard deviation. The fading is assumed to 
be slow compared to the observed interval of the sensing method. Thus, the channel gain is 
assumed to remain constant during observed interval but it varies randomly between 
consecutive observed intervals. 
Under these circumstances, furthermore, the ROC of the proposed scheme is compared with 
the two schemes from [6], namely the EGC based scheme and the OSC scheme. In the OSC 
scheme, the global spectrum sensing decision is made based on the weighted sum of the 
observed energies as follows: 
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where τ  is the decision threshold. The OSC scheme has an optimal sensing performance but it 
exhibits a significant transmission overhead as all CUs are requested to send their observed 
energies along with SNRs to the FC. 
On the other hand, the EGC based scheme makes the global spectrum sensing decision by 
comparing the  sum of the observed energies with the decision threshold: 
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Compared with the OSC scheme, the EGC based scheme has lower communication cost since 
in the EGC based scheme, each CU needs sending only its observed energy to the FC. 
Nonetheless, the sensing performance of the EGC based scheme is lower than that of the OSC 
scheme. 
 

 
Fig. 8. ROC curves of the proposed scheme and comparison schemes. 

A comparison of these results is presented in Fig. 8. Under non-fading conditions, the 
proposed scheme outperforms the EGC based scheme and has almost the same performance as 
the OSC scheme. However, note that to implement the proposed scheme, only the observed 
energies are needed. Yet in the case of the OSC scheme, each CU must also send the SNR of 
the PU signal to the FC. Under both Rayleigh fading and Log-normal shadow fading 
conditions, the sensing performance of the proposed scheme and the OSC scheme are almost 
similar to the one of the EGC based scheme. 

Secondly, the estimation performance of the proposed scheme is tested in terms of 
estimation error and stability. Fig. 9 shows the observed energy at CU5, its mean under 
hypothesis H1 and the estimate of its mean under hypothesis H1 by the FC. We observe that 
although the observed energy of the 5-th CU varies strongly due to effect of the additive noise 
and the change of the PU signal status, but the estimated conditional mean 

51m̂ quickly catches 
the realal one 

51m , and the gap between them is very small. The stability of the proposed 
detection and estimation algorithm is verified through estimation error variance. The error 
variance of the estimated mean 

51m̂ , namely P5, is plotted in Fig. 10. This result proves that the 
proposed algorithm reaches steady state in just only about 60 iterations. 
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Fig. 9. Estimate of mean under H1 of CU5’s observed energy. 

 
Fig. 10. Error variance of 

51m̂ . 
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7. Conclusions 
In order to detect spectrum holes reliably and efficiently, in this paper we propose an adaptive 
fuzzy based data fusion algorithm for cooperative spectrum sensing in CR networks. The 
advantage of the proposed scheme comes from the fact that it can work without any 
requirements about the knowledge of the PU signal, the prior probability of the PU activity, 
and SNRs of the PU signal at cognitive radio terminals. Simulation results showed that the 
sensing performance of the proposed scheme outperforms the performance of equal gain 
combination based scheme, and matches the performance of the optimal soft combination 
scheme.  

One limitation of the proposed scheme is the choice of the pre-determined parameters, namely minγ
and maxγ , since the convergent speed of the proposed estimation algorithm depends on this choice. 

Consequently, finding lower bound of minγ  and upper bound of maxγ is still an open issue. Future work 
is in progress in this direction. 
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