• Title/Summary/Keyword: Fused silica

Search Result 174, Processing Time 0.03 seconds

Characteristic of Resistance to Tracking and Mechanical Strength by Silica type of Cycloaliphatic-Bisphenol Blending Epoxy (싸이클로알리파틱과 비스페놀 계열 혼합 에폭시 수지의 실리카 종류에 따른 내트래킹 특성 및 기계적 강도)

  • Jung, Hae-Eun;Kang, Han-Young;Park, Seok-Weon;Lee, Jhong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.90-90
    • /
    • 2010
  • Cycloaliphatic Epoxy와 Bisphenol Epoxy를 각각 mol-wt%비 (80:20, 50:50, 20:80)로 혼합하고 Epoxy Silaned Silica, 바ed Silica, Spherical Silica, ATH(Aluminum Trihydrate)를 충진하여 내트래킹 특성 및 인장강도, 충격강도 등의 기계적 강도를 비교하였다. Cycloaliphatic 수지는 Huntsman사(社)의 CY5622, Bisphenol 수지는 Hexion사(社)E의 Epikote2200을 사용하였으며, Silaned Silica 및 Fused Silica는 Quatzwerke사(社)의 W12, FW12를 사용하였다. 전체 혼합물 중, 에폭시는 약 36%, 실리카는 약 34~540%, ATH는 약 10~30% 이다. 실험결과, ATH 함량이 높은 조성 및 Epoxy Silaned Silica를 사용한 조성과 Cycloaliphatic 혼합비율이 높은 조성이 우수한 내트래킹 특성을 보였다. 또한, Silica의 함량이 증가할수록 기계적 강도가 증가하였으며, Silaned Silica를 사용하였을 때 가장 우수한 특성을 나타내었다. 본 실험의 결과를 통해 옥외용 내트래킹 특성 규격인 IEC60587 4.5kV/6h를 만족하는 조성에 대해 가늠이 가능하였고, 각 조성에 따른 기계적 강도의 확인이 가능하였다.

  • PDF

Flow Properties of Liquid Epoxy Compounds as a Function of Filler Fraction for the Underfill (Underfill용 액상 Epoxy Compound의 Filler 충진에 따른 Flow특성 연구)

  • 김원호;황영훈;배종우;정혜욱
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.2
    • /
    • pp.21-27
    • /
    • 2000
  • To develop the underfill materials which are required for the new process of semi-conductor industry, the properties of epoxy/anhydride/cobalt(II) catalyst system with two types of fused silica(1 $\mu\textrm{m}$, 8 $\mu\textrm{m}$) are studied as a function of filler fraction. According to the curing profile, the optimum catalyst amount was 1.0 wt% for full curing at the conditions of $160^{\circ}C$/l5 min., and we could conclude that the viscosity has superior effect on the real flaw through the relationship between surface tension and viscosity data. The underfills which were filled with 1 $\mu\textrm{m}$ fused silica did not show good flowability, but they should be useful by improving the viscosity for a future process which has small gaps. The underfills which were filled with 8 $\mu\textrm{m}$ fused silica showed good flowability when the filler contents were 55~60 vol%. The model which was referred by Matthew can predict the real flow length only when the underfill has high viscosity and low surface tension.

  • PDF

Effects of pH and the Existence of CO2 Gas on the Silica Surface Characteristics at Silica/Pb(II) Solution Interface (CO2 가스의 존재 여부와 용액의 pH가 Silica/Pb(II) 용액 계면에서 Silica 표면의 특성에 미치는 영향)

  • Lee, Sang-Eun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.36 no.5
    • /
    • pp.263-271
    • /
    • 2003
  • Effects of the existence of $CO_2$ gas and pH on the silica surface characteristics at silica/Pb(II) and sodium dodecyl sulfonate (SDS, $C_{12}H_{25}SO_3Na$) solution interface were studied. The hydrophobic characteristics of silica surface was delineated by contact angle measurement and surface force measurement using atomic force microscopy (AFM). In $CO_2$ free condition provided by purging $N_2$ gas, the contact angle of fused silica surface in $10^{-4}M$ Pb(II) and SDS solution increased greatly up to $90^{\circ}$ compared with $40^{\circ}$ in atmospheric condition. It was due to the precipitation of $PbCO_3$ in atmospheric condition. In $CO_2$ free condition the change of contact angle and adhesion force ($F_{ad}$) in AFM, affected by pH change, was similar to the distribution of $PbOH^+$ ion in speciation diagram corresponding to $10^{-4}M$ total Pb(II). Therefore, it was convinced that the $PbOH^+$ ion among Pb(II) species would be the main adsorbing type on silica surface. Both of contact angle measurement and surface force measurement using AFM showed that the Pb only treatment made the silica surface hydrophobic. However, it could not be explained theoretically by current knowledge, and required further study in atomic level to solve the problem.

Effect of Substrata Surface Energy on Light Scattering of a Low Loss Mirror (기판의 표면에너지가 반사경의 산란에 미치는 영향)

  • Lee, Beom-Sik;Yu, Yeon-Serk;Lee, Jae-Cheul;Hur, Deog-Jae;Cho, Hyun-Ju
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.6
    • /
    • pp.452-460
    • /
    • 2007
  • Ultra-low loss ZERODUR and fused silica mirrors were manufactured and their light scattering characteristics were investigated. For this purpose, ZERODUR and fused silica substrates were super-polished by the bowl feed method. The surface roughness were 0.292 ${\AA}$ and 0.326 ${\AA}$ in rms for ZERODUR and fused silica, respectively. To obtain the high reflectivity, 22 thin film layers of $SiO_2$ and $Ta_2O_5$ were deposited by Ion Beam Sputtering. The measured light scattering of ZERODUR and fused silica mirror were 30.9 ppm and 4.6 ppm, respectively. This shows that the substrate surface roughness is not the only parameter which determines the light scattering of the mirror. In order to investigate the mechanism for additional light scattering of the ZERODUR mirror, the surface roughness of the mirror was measured by AFM and was found to be 2.3 times higher than that of the fused silica mirror. It is believed that there is some mismatch at the interface between the substrate and the first thin film layer which leads to the increased mirror surface roughness. To clarify this, the contact angle measurements were performed by SEO 300A, based on the Giriflaco-Good-Fowkes-Young method. The fused silica substrates with 0.46 ${\AA}$ in its physical surface roughness shows lower contact angle than that of the ZERODUR substrate with 0.31 ${\AA}$. This indicates that the thin film surface roughness is determined by not only its surface roughness but also the surface energy of the substrate, which depends on the chemical composition or crystalline orientation of the materials. The surface energy of each substrate was calculated from a contact angle measurement, and it shows that the higher the surface energy of the substrate, the better the surface roughness of the thin film.

A study on the brittle characteristics of fused silica header driven by piezoelectric actuator for laser assisted TC bonding (레이저 열-압착 본딩을 위한 압전 액추에이터로 구동되는 용융실리카 헤더의 취성특성에 관한 연구)

  • Lee, Dong-Won;Ha, Seok-Jae;Park, Jeong-Yeon;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.13 no.4
    • /
    • pp.10-16
    • /
    • 2019
  • Semiconductor chip is bonded to the substrate by melting solder bumps. In general, the chip bonding is applied by a Reflow process or a Thermo-Compression(TC) bonding process. In this paper, we introduce a Laser Assisted Thermo-Compression bonding (LATCB) process to improve the anxiety of the existing process(Reflow, TC bonding). In the LATCB process, the chip is bonded to the substrate by irradiating a laser with a uniform energy density in the same area as the chip to melt only the solder bumps and press the chip with a Transparent Compression Module (TCM). The TCM consists of a fused silica header for penetrating the laser and pressurizing the chip, and a piezoelectric actuator (P.A.) coupled to both ends of the header for micro displacement control of the header. In addition, TCM is a structure that can pressurize the chip and deliver it to the chip and solder bumps without losing the energy of the laser. Fused silica, which is brittle, is vulnerable to deformation, so the header may be damaged when an external force is applied for pressurization or a displacement differenced is caused by piezoelectric actuators at both ends. On the other hand, in order to avoid interference between the header and the adjacent chip when pressing the chip using the TCM, the header has a notch at the bottom, and breakage due to stress concentration of the notch is expected. In this study, the thickness and notch length that the header does not break when the external force (500 N) is applied to both ends of the header are optimized using structural analysis and Coulomb-Mohr failure theory. In addition, the maximum displacement difference of the P.A.s at both ends where no break occurred in the header was derived. As a result, the thickness of the header is 11 mm, and the maximum displacement difference between both ends is 8 um.

Characteristics of Lightweight Concrete and Their Application in Structures

  • ;R.N. Swamy
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.E
    • /
    • pp.60-69
    • /
    • 1992
  • The research significance of the paper is to identify the major properties of synthetic lightweight concrete that are affected by ASR expansion and to determine the extent and magnitude of the loss in these properties. Emphasis is also given to the use of non-destructive testing techniques ; Such as dynamic modulus of elasticity and ultrasonic pulse velocity, to examine whether these methods could be used to identify the initiation of expansion and the internal structural damage caused by ASR.

  • PDF

A Low- Viscousity, Highly Thermally Conductive Epoxy Molding Compound (EMC)

  • Bae, Jong-Woo;Kim, Won-Ho;Hwang, Seung-Chul;Choe, Young-Sun;Lee, Sang-Hyun
    • Macromolecular Research
    • /
    • v.12 no.1
    • /
    • pp.78-84
    • /
    • 2004
  • Advanced epoxy molding compounds (EMCs) should be considered to alleviate the thermal stress problems caused by low thermal conductivity and high elastic modulus of an EMC and by the mismatch of the coefficient of thermal expansion (CTE) between an EMC and the Si-wafer. Though A1N has some advantages, such as high thermal conductivity and mechanical strength, an A1N-filled EMC could not be applied to commercial products because of its low fluidity and high modules. To solve this problem, we used 2-$\mu\textrm{m}$ fused silica, which has low porosity and spherical shape, as a small size filler in the binary mixture of fillers. When the composition of the silica in the binary filler system reached 0.3, the fluidity of EMC was improved more than twofold and the mechanical strength was improved 1.5 times, relative to the 23-$\mu\textrm{m}$ A1N-filled EMC. In addition, the values of the elastic modules and the dielectric constant were reduced to 90%, although the thermal conductivity of EMC was reduced from 4.3 to 2.5 W/m-K, when compared with the 23-$\mu\textrm{m}$ A1N-filled EMC. Thus, the A1N/silica (7/3)-filled EMC effectively meets the requirements of an advanced electronic packaging material for commercial products, such as high thermal conductivity (more than 2 W/m-K), high fluidity, low elastic modules, low dielectric constant, and low CTE.