• Title/Summary/Keyword: Fused combining

Search Result 32, Processing Time 0.022 seconds

A Study on the Optimal Design for Lightweight Vehicle Dash (차량 경량화를 위한 최적설계에 관한 연구)

  • Lee, Gyung-Il
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.14-20
    • /
    • 2020
  • Currently, the automotive market is intensively researching eco-friendly vehicles such as EV vehicles and hydrogen vehicles. Further, research and developments for the future markets such as autonomous vehicles and the connective cars are coped up continuously along with the rising fuel economy regulations and the emission regulations. In this development, various sensors, batteries, and control devices are fused in order to decrease the weight of the vehicle. Moreover, since the fuel economy regulation is an issue, research on the weight reduction of body parts is underway. Therefore, in this work, a study is conducted to obtain the optimal design of the Dash part that separates the engine room and the passenger seat of the vehicle body by combining lightweight materials with high rigidity materials. The optimal design was obtained using the Finite Element Analysis. Further, AL5083 was used as the lightweight material and ASBC1470 was used for high strength materials. The parts made with this combination of materials had strength equivalent to that of the existing steel and the weight was reduced by 10%.

The Possibility of Design Creation by Convergence of Contemporary technology and Traditional Craft (신기술과 공예의 융합을 통한 디자인 창작의 가능성)

  • Ha, Euna
    • Korea Science and Art Forum
    • /
    • v.25
    • /
    • pp.463-475
    • /
    • 2016
  • As the transition to the digital age in the late 20th century, the intrinsic value of the craft, the emotional values of human, has been noticed as an alternative to overcome the adverse effects of the modernism of the industrial age. To introduce experimental tries which convergence of contemporary technologies and elements of traditional craft, and to inspire artists and present the new possibility of creation to them who want to take advantage of craft emotion as the elements of creation is the purpose of this study in the current digital technology age. First, the meaning and value of craft in modern times and digital media and hybrid creation environments are theoretically investigated based on previous studies and literature. Second, design cases produced by combining digital technology as a tool and craft elements are classified for substantial understanding of the design. Thirdly, identify the design characteristics presented through case studies and suggest the new possibility of creation. The results of the study are as follows. Reject typical types highlight the functional role and try free express conversion, e.g. form, material, texture, making process etc. Extracts the various elements that can be applied and search combining ways, because the convergence of digital technology and the craft is sufficient to activate the human emotion. Interaction between the craft and the digital medium is made actively. Craft accepts digital form, the craft appeared again as the contents of the digital. the traditional and digital method appropriately fused and utilized depending on the situation in process.

Application Types and Meanings of Fashion Engineering in Fashion Brand CuteCircuit (패션 브랜드 CuteCircuit에 나타난 패션 공학의 적용 유형과 의미)

  • Kim, Jang-Hyeon;Kim, Young-Sam
    • Fashion & Textile Research Journal
    • /
    • v.20 no.3
    • /
    • pp.245-256
    • /
    • 2018
  • This study considers application types and meanings of fashion engineering by analyzing CuteCircuit. The conclusions of this study are as follows. The application type of fashion engineering shown in CuteCircuit is first, electronic fashion, which attaches LED or WL on the surface of clothes to express the decorative function in clothes as optical light change, ultimately performing one-dimensional function. Second, interactive fashion is a medium in which clothing connects human beings with other human beings with sensors that can recognize the changes in tactile or movement with the wearer or with a light source that can visualize the emotional changes of the wearer. Third, scientific fashion has emerged as a new type of fashion in which new materials introduced in the field of engineering are fused with clothing to expand functionality and aesthetics. The meanings of fashion engineering in CuteCircuit is first, trying to conceptualize a new beauty as an open fashion that can freely change with the creation of a dual beauty by combining analog and digital sensibility. Second is the external representation of human psychological change or emotional exchange, which helps to form a consensus by understanding and exchanging emotions of different people. Third, reorganization of apparel pursuing integrated value appeared. Clothing, as a connection body in which the human body and the mechanical environment are combined with each other, is reestablished as a product of variable body that can embody an integrated value that includes various characteristics and can be diversified appropriately in any circumstance.

A review of 3D printing technology for piezoresistive strain/loadcell sensors (3D 프린팅 센서 연구 동향 소개-전왜성 변형/로드셀 센서 중심으로)

  • Cho, Jeong Hun;Moon, Raymond Hyun Woo;Kim, Sung Yong;Choi, Baek Gyu;Oh, Gwang Won;Joung, Kwan Young;Kang, In Pil
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.6
    • /
    • pp.388-394
    • /
    • 2021
  • The conventional microelectromechanical system (MEMS) process has been used to fabricate sensors with high costs and high-volume productions. Emerging 3D printing can utilize various materials and quickly fabricate a product using low-cost equipment rather than traditional manufacturing processes. 3D printing also can produce the sensor using various materials and design its sensing structure with freely optimized shapes. Hence, 3D printing is expected to be a new technology that can produce sensors on-site and respond to on-demand demand by combining it with open platform technology. Therefore, this paper reviews three standard 3D printing technologies, such as Fused Deposition Modeling (FDM), Direct Ink Writing (DIW), and Digital Light Processing (DLP), which can apply to the sensor fabrication process. The review focuses on strain/load sensors having both sensing material features and structural features as well. NCPC (Nano Carbon Piezoresistive Composite) is also introduced as a promising 3D material due to its favorable sensing characteristics.

Design of motion-adaptable 3D printed impact protection pad (동작 가변적 3D 프린팅 충격보호패드의 설계)

  • Park, Junghyun;Lee, Jinsuk;Lee, Jeongran
    • The Research Journal of the Costume Culture
    • /
    • v.30 no.3
    • /
    • pp.403-413
    • /
    • 2022
  • The purpose of this study was to develop a 3D mesh-type impact protection pad with excellent motion adaptability and functionality by applying 3D printing technology. The hexagonal 3D mesh, which constitutes the basic structure of the pad, comprises two types: small and large. The bridge connecting the basic units was designed as the I-type, V-type, IV-type, and VV-type. After evaluating the characteristics of the bridge, it was found that the V-type bridge had the highest flexibility and tensile elongation. The hip joint pad and knee pad were completed by combining the hexagonal 3D mesh structure with the optimal bridge design. The impact protection pad was printed using a fused deposition modeling-type 3D printer with a filament made of thermoplastic polyurethane material, and the protection pad's performance was evaluated. When an impact force of approximately 6,500N was applied to the pad, the force attenuation percentage was 78%, and when an impact force of approximately 8,000N was applied, the force attenuation percentage was 75%. Through these results, it was confirmed that the 3D-printed impact protection pad with a hexagonal 3D mesh structure connected by a V-shaped bridge developed in this study can adapt to changes in the body surface according to movement and provides excellent impact protection performance.

Effect of Adding Graphene/Carbon Nanotubes (FCN) on the Mechanical Properties of Polyamide-Nylon 6 (그래핀/탄소나노튜브(FCN) 첨가에 따른 Polyamide-Nylon 6의 기계적 특성에 미치는 영향)

  • Seung-Jun Yeo;Hae-Reum Shin;Woo-Seung Noh;Man-Tae Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1297-1303
    • /
    • 2023
  • Research on enhancing the mechanical strength, lightweight properties, electrical conductivity, and thermal conductivity of composite materials by incorporating nano-materials is actively underway. Thermoplastic resins can change their form under heat, making them highly processable and recyclable. In this study, Polyamide-Nylon 6 (PA6), a thermoplastic resin, was utilized, and as reinforcing agents, fused carbon nano-materials (FCN) formed by structurally combining Carbon Nanotube(CNT) and Graphene were employed. Nano-materials often face challenges related to cohesion and dispersion. To address this issue, Silane functional groups were introduced to enhance the dispersion of FCN in PA6. The manufacturing conditions for the composite materials involved determining the use of a dispersant and varying FCN content at 0.05 wt%, 0.1 wt%, and 0.2 wt%. Tensile strength measurements were conducted, and FE-SEM analysis was performed on fracture surfaces. As a result of the tensile strength test, it was confirmed that compared to pure PA6, the strength of the polymer composite with a content of 0.05 wt% was improved by about 60%, for 0.1 wt%, about 65%, and for 0.2 wt%, the strength was improved by 50%. Also, when compared according to the content of FCN, the best strength value was shown when 0.1 wt% was added. The elastic modulus also showed an improvement of about 15% in the case of surface treatment compared to the case without surface treatment, and an improvement of about 70% compared to pure PA6. Through FE-SEM, it was confirmed that the matrix material and silane-modified nanomaterial improved the dispersibility and bonding strength of the interface, helping to support the load evenly and enabling effective stress transfer.

A Study on the Controller Design of 3D Printed Robot Hand using TPU Material (TPU 소재를 이용한 3D 프린팅 로봇 손의 제어기 설계에 관한 연구)

  • Young-Rim Choi;Ye-Eun Park;Jong-Wook Kim;Sunhee Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.48 no.2
    • /
    • pp.312-327
    • /
    • 2024
  • In this study, a rehabilitation 3D printed wearable device was developed by combining an assembly-type robot hand and an integral-type robot hand through fused deposition 3D printing manufacturing with various hardness TPU (Thermoplastic Polyurethane) filaments. The hardware configuration of the robot hand includes a controller designed with four motors, one small servo motor, and a circuit board. In the case of the assembly-type robot hand model, a 3D printed robot hand was assembled using samples printed with TPU of hardness 87A and 95A. It was observed that TPU with a hardness of 95A was suitable for use due to shape stability. For the integrated-type robot hand model, the external sample using TPU of hardness 95A could be modified through a cutting method, and the hardware configuration is the same as the assembly-type. The system structure of the 3D printed robot hand was improved from an individual control method to a simultaneous transmission method.Furthermore, the system architecture of an integrated 3D printed robotic hand rehabilitation device and the application of the rehabilitation device were developed.

Performance Improvement of Speaker Recognition by MCE-based Score Combination of Multiple Feature Parameters (MCE기반의 다중 특징 파라미터 스코어의 결합을 통한 화자인식 성능 향상)

  • Kang, Ji Hoon;Kim, Bo Ram;Kim, Kyu Young;Lee, Sang Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.679-686
    • /
    • 2020
  • In this thesis, an enhanced method for the feature extraction of vocal source signals and score combination using an MCE-Based weight estimation of the score of multiple feature vectors are proposed for the performance improvement of speaker recognition systems. The proposed feature vector is composed of perceptual linear predictive cepstral coefficients, skewness, and kurtosis extracted with lowpass filtered glottal flow signals to eliminate the flat spectrum region, which is a meaningless information section. The proposed feature was used to improve the conventional speaker recognition system utilizing the mel-frequency cepstral coefficients and the perceptual linear predictive cepstral coefficients extracted with the speech signals and Gaussian mixture models. In addition, to increase the reliability of the estimated scores, instead of estimating the weight using the probability distribution of the convectional score, the scores evaluated by the conventional vocal tract, and the proposed feature are fused by the MCE-Based score combination method to find the optimal speaker. The experimental results showed that the proposed feature vectors contained valid information to recognize the speaker. In addition, when speaker recognition is performed by combining the MCE-based multiple feature parameter scores, the recognition system outperformed the conventional one, particularly in low Gaussian mixture cases.

Formative Characteristics of Women's Shoes Design Utilizing 3D Printing Technology (3D 프린팅 기술이 접목된 여성 슈즈 디자인의 조형적 특성)

  • Kim, Young-Sam;Jun, Yuh-Sun;Park, keun-Jung;Kim, Jang-Hyeon
    • Journal of the Korean Society of Costume
    • /
    • v.66 no.8
    • /
    • pp.14-32
    • /
    • 2016
  • This study examines the morphological expression type and formative characteristics of women's shoes designs that integrate 3D printing technology. The results of the study are as follows. First, the morphological expression types of contemporary shoes that integrate 3D printing technology express a structural form created by repetition. Second, it expresses a dynamic form, which combines organic curves that create an external volume. Third, it expresses a surrealistic form centered on an object with the creation of a unique shape that utilizes objects easily experienced in local surroundings. Fourth, it expresses a hybrid form on a partial derivation. Each of the other system's components are fused to create another beauty that develops a new value in a colorful variation on the shape of 3D printing shoes. The first formative characteristic of women's shoes designs that integrate 3D printing technology is continuity. This creates an invisible form of a new space through repetitive unidirectional layers with a gradual expansion of a unitary seamless curves. Second, it is an exaggeration. This exaggeration elicits an enormous aesthetic quality by structuring the outward space in the difference of the volume formed based on the maximization of a specific part and the volume of a line's atypical movement. Third, it is a decoration. It displays the beauty of a decoration that evokes a unique artistic inspiration by partial unification or a practical representation of a specific form. This can also be seen as superimposing a 3D printing figure that has an outstanding shape onto part of the fashion shoes. Fourth, it concerns a geometrical characteristic that formulates a new structure with rationality in combining basic shapes such as circles, triangles and squares with lines, hexagons and interconnected geometrical forms to create a multi-dimensional space for shoes in a systematic and unidirectional pattern.

Robust Image Fusion Using Stationary Wavelet Transform (정상 웨이블렛 변환을 이용한 로버스트 영상 융합)

  • Kim, Hee-Hoon;Kang, Seung-Hyo;Park, Jea-Hyun;Ha, Hyun-Ho;Lim, Jin-Soo;Lim, Dong-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.6
    • /
    • pp.1181-1196
    • /
    • 2011
  • Image fusion is the process of combining information from two or more source images of a scene into a single composite image with application to many fields, such as remote sensing, computer vision, robotics, medical imaging and defense. The most common wavelet-based fusion is discrete wavelet transform fusion in which the high frequency sub-bands and low frequency sub-bands are combined on activity measures of local windows such standard deviation and mean, respectively. However, discrete wavelet transform is not translation-invariant and it often yields block artifacts in a fused image. In this paper, we propose a robust image fusion based on the stationary wavelet transform to overcome the drawback of discrete wavelet transform. We use the activity measure of interquartile range as the robust estimator of variance in high frequency sub-bands and combine the low frequency sub-band based on the interquartile range information present in the high frequency sub-bands. We evaluate our proposed method quantitatively and qualitatively for image fusion, and compare it to some existing fusion methods. Experimental results indicate that the proposed method is more effective and can provide satisfactory fusion results.