• Title/Summary/Keyword: Fuse current

Search Result 132, Processing Time 0.032 seconds

Empirical Modeling on the Breaking Characteristics of Power Current Limited Fuse (전력용 백업퓨우즈 차단특성 모델링)

  • Lee Sei-Hyun;Lee Bvung-Sung;Han Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.54 no.9
    • /
    • pp.391-396
    • /
    • 2005
  • In this paper the modeling of interrupting characteristics of a high voltage current limiting fuse to be used in a power distribution system is introduced. In order to reduce the level of energy which can be absorbed by equipment during fault current flow, a high voltage current limiting fuse can generate a high voltage at the fuse terminals. Consequently it is necessary to model and analyze precisely the voltage and current variation during a CL fuse action. The characteristics of CL fuse operation modeled by electrical components have been performed with less than 6 [$\%$] errors. So the fuse designer or manufacturer can estimate the characteristics of CL fuse operation by using this modeling. The Electro Magnetic Transient Program (EMTP) is used to develop the modeling.

Fiber Fabry-Perot interferometric sensor for the measurement of current flowing into a small fuse (소형 퓨즈에 흐르는 전류 측정용 광섬유 패브리-페로 간섭형 센서)

  • Park, Sung-Sun;Park, Jae-Hee;Kim, Kyung-Chan
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.91-95
    • /
    • 2005
  • A fiber Fabry-Perot interferometric sensor for the measurement of current flowing into a small fuse have been studied. The proposed current sensor was fabricated with a fiber Fabry-Perot interferometer attached close to a fuse line inside a small fuse. The fiber Fabry-Perot interferometer used in the experiment had the 10 mm cavity length and the 3.5 % reflectance mirrors. The phase shift of the output signal of the current sensor was proportional to the square of current applied to the fuse and the sensitivity of the current sensor was 0.87 degree/$mA^{2}$. The experiment results show that this sensor can be used for measuring current flowing into the fuse.

An Experimental Study on Melting Characteristics of Low-voltage Miniature Cartridge Fuse (저압용 소형 관형퓨즈의 용단 특성에 관한 실험적 연구)

  • Ji, H.K.;Kim, J.P.;Song, J.Y.;Choi, Y.W.;Park, C.S.;Park, N.K.;Kil, G.S.
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.5
    • /
    • pp.15-20
    • /
    • 2013
  • This paper dealt with melting characteristics of low-voltage miniature cartridge fuse used for 220 V electronic equipment. The experimental sample is low-voltage miniature cartridge fuse with rating of 250 V(3A) and size of $5{\times}20$ mm. In order to evaluate melting and scattering characteristics of the fuse, we applied to 8/20 ${\mu}s$ surge current, overload current and external thermal stress such as flame of fire. From the experimental results, the fuse element was melted and scattered by applied surge current(above 0.79 kA) and overload current(above 4.5 A). It was also attached to the inner surface of the fuse tube. The fuse element was attached as a thin film on inner surface of fuse tube when large surge current was applied. It was confirmed, however, the fuse element was not changed by external thermal stress such as flame and hot-air.

A Study on the Fuse Sizing Technique for the Protection of Satellite Power System (인공위성 전력 시스템 보호를 위한 퓨즈 선정 기법 연구)

  • Jeon, Hyeon-Jin;Lim, Seong-Bin;Lee, Sang-Rok
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Power system in satellite is protected by installing fuses, LCLs (Latching Current Limiters), etc. between satellite power supply and loads. In this paper, the fuse sizing technique for satellite power system protection is addressed. Detailed fuse sizing method is explained and it is shown that the single fuse connection method is mathematically subordinated to the parallel fuse connection method. In addition, appropriate fuse selection method is newly suggested under a situation where exact current characteristics of a load connected to a fuse is unknown.

Design of Fuse Elements of Current Sensing Type Protection Device for Portable Secondary Battery Protection System (휴대용 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 퓨즈 가용체 설계)

  • Kang, Chang-Yong;Kim, Eun-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.12
    • /
    • pp.1619-1625
    • /
    • 2018
  • Portable electronic devices secondary batteries can cause fire and explosion due to micro-current change in addition to the situation of short-circuit inrush current, safety can not be secured with a general operation limited current fuse. Therefore, in secondary battery, it is necessary for the protector to satisfy both the limit current type operation in the open-short-circuit inrush current and the current detection operation characteristic in the micro current change situation and for this operation, a fuse for the current detection type secondary battery protection circuit can be applied. The purpose of this study is to design a protection device that operates stably in the hazardous situation of small capacity secondary battery for portable electronic devices through the design of low melting fuse elements alloy of sensing type fuse and secures stability in abnormal current state. As a result of the experiment, I-T and V-T operation characteristics are satisfied in a the design of the alloy of the current sensing type self-contained low melting point fuse and the resistance of the heating resistor. It is confirmed that it can prevent accidents of short circuit over-current and micro current change of secondary battery.

A Study of Re-Fuse Coordination Method of Distribution System with SFCL (배전계통에 초전도 전류제한기 적용 시 Relcoser-Fuse 협조 방법에 관한 연구)

  • Kim, Myoung-Hoo;Kim, Jin-Seok;You, Il-Kyoung;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1835-1841
    • /
    • 2009
  • We analyze the problem of recloser-fuse coordination when a superconducting fault current limiter (SFCL) is installed to a power distribution system. Generally, The recloser is installed to upstream of fuse to protect against both permanent fault and temporary one appropriately. However, in a power distribution system with SFCL, the fault current is decreased by the effect of the impedance value of the SFCL and when a permanent fault occurs, the fuse may not melt during the last delay operation of the recloser because of the insufficient heat from the decreased current. Therefore, when SFCLs are applied into a power distribution system, the rating of the fuse has to be reselected to coordinate recloser to fuse effectively. To solve these problems, this paper analysed the operation of recloser-fuse coordination and presented the improved recloser-fuse coordination method in a power distribution system with SFCL using PSCAD/EMTDC.

Analysis on Recloser-Fuse Coordination in a Power Distribution System linked Small Scale Cogeneration System with Superconducting Fault Current Limiter (소형 열병합발전 시스템이 연계된 배전계통에 초전도 전류제한기 적용시 리클로져-퓨즈 협조 분석)

  • Kim, Myoung-Hoo;Kim, Jin-Seok;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Lee, Joon-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.499-505
    • /
    • 2010
  • This paper analyzed that the coordination of recloser-fuse when a superconducting fault current limiter (SFCL) is installed to a power distribution system linked small scale cogeneration system. As a rule, the recloser to properly protect against both permanent and temporary fault is installed to upstream of fuse. Therefore, in a power distribution system linked small scale cogeneration system, the fault current is increased by adding fault current of small scale Cogeneration system when a permanent fault occurs, and the fuse could melt during the first fast operation of the recloser because of more sufficient heat from the increased current. However, when SFCLs are applied into a power distribution system linked small scale cogeneration system, the coordination of recloser-fuse could be accomplished due to decreased fault current as the effect of the impedance value of the SFCL. Therefore, to solve these problems, we analysed the operation of recloser-fuse coordination in a power distribution system linked small scale cogeneration system with SFCL using PSCAD/EMTDC.

Design of Low-Melting Metal Fuse Elements of Current Sensing Type Protection Device for Large Capacity Secondary Battery Protection System (대용량 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 저융점 금속 가용체 설계)

  • Kim, Eun Min;Kang, Chang yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.31 no.6
    • /
    • pp.427-432
    • /
    • 2018
  • High-capacity secondary batteries can cause explosion hazards owing to microcurrent variations or current surges that occur in short circuits. Consequently, complete safety cannot be achieved with general protection that is limited to a mere current fuse. Hence, in the case of secondary batteries, it is necessary for the protector to limit the inrush current in a short circuit, and to detect the current during microcurrent variations. To serve this purpose, a fuse can be employed for the secondary battery protection circuit with current detection. This study aims at designing a protection device that can stably operate in the hazardous circumstances associated with high-capacity secondary batteries. To achieve the said objective, a detecting fuse was designed from an alloy of low melting point elements for securing stability in abnormal current states. Experimental results show that the operating I-T and V-T characteristic constraints can be satisfied by employing the proposed current detecting self-contained low melting point fuse, and through the resistance of the heating resistor. These results thus verify that the proposed protection device can prevent the hazards of short circuit current surges and microcurrent variations of secondary batteries.

Design of Fuse-Link Structure & Fe-Ni Alloy Element's Shape to Increase an Interrupt Rating of a Semi-Enclosed Type Fuse (반밀폐형 퓨즈의 차단용량 상승을 위한 Fe-Ni 합금 가용체의 형상 및 퓨즈링크 구조 설계)

  • Kim, Seong-Ju;Kim, Doe-Hoon;Kang, Chang-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.644-650
    • /
    • 2018
  • According to a miniaturization and integration of electric device, a little size of fuse satisfying the current carrying capacity as well as an explosive tolerance and current interrupt rating are required. Fe-Ni alloy is applied to decrease an oxidation of fuse elements. A resistance and T.C.R(temperature coefficient of resistance) of a fuse are analyzed by changing a content of Ni And full rated current I-T curve from 1A to 6.3A has been tested. In order to an explosive energy, a straight wire type is selected to reduce a fuse melting time. An interrupt rating test was conducted by changing a content of Ni and the optimal content of Ni is to be 40%.

Characteristics of Short-Circuit Protector in Pad-Mounted Transformer (지상변압기의 단락보호장치 특성연구)

  • Kim, K.H.;Lee, W.Y.;Sun, C.H.;Kim, D.M.;Kim, S.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1350-1352
    • /
    • 1995
  • This paper discribed the characteristic of I-t cross-over-point between current limited-fuse and explusion fuse(Bay-O-Net Fuse) and fuse protection in pad-mounted transformer that was generated internal faults and the short circuit of secondary side(load side). In the I-t cross-over-point, current limited fuse was melted when transient recovery voltage was raised rapidly.

  • PDF