• Title/Summary/Keyword: Furnace slag

Search Result 1,506, Processing Time 0.038 seconds

Strength Properties of Calcium-aluminate based Foamed Concrete according to Replacement Ratio of GGBFs (고로슬래그 혼입율에 따른 CA계 기포콘크리트의 강도특성)

  • Yu, Jae-Seong;Choi, Sun-Mi;Choi, Hong-Bum;Li, Mao;Kim, Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.39-40
    • /
    • 2016
  • The aim of this research was evaluating strength characteristics of foamed concrete using Ladle Furnace slag with GGBFs. For all mixtures, because of the early setting and strength development, it was possible to deform the formwork and measure the compressive strength within 3 hours.

  • PDF

Properties of Strength Development of Concrete Using High Fineness Cement and Blast Furnace Slag (고분말도 시멘트와 고로슬래그 미분말을 사용한 콘크리트의 강도발현 성상)

  • Kim, Han-Sic;Ha, Jung-Soo;Lee, Young-Do
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2018.05a
    • /
    • pp.197-198
    • /
    • 2018
  • As part of the effort to shorten the construction period, this study examined the strength expression characteristics at the early age of concrete using high fineness cement and blast furnace slag. accordingly to provide a basic data on how to solve the problem that the initial strength is lowered.

  • PDF

Properties of Surface Grossing of Exposed Concrete with the Contents of Blast Furnace Slag (고로슬래그 미분말의 치환율 변화에 따른 제치장 콘크리트의 표면광택 특성)

  • 전충근;김효구;김정진;김기철;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.911-914
    • /
    • 2000
  • Surface glossing and physical properties of exposed concrete varied with blast furnace slag content are dsicussed in this paper. According to experimental results, as the content of blast furnace slag increases, concrete gains high strength moderately at later stage and surface glossing increase. It shows that glossing decrease with age. Surface glossing shows high as W/B decreases and surface coating is applied. Concrete according to form type shows good results in surface glossing in order for acryl form, fancy form and steel form.

An Experimental Study on Rapid Repairing Mortar for Road with Steel Slag (철강 슬래그를 사용한 도로용 긴급보수 모르타르에 관한 실험적 연구)

  • Jung, Ui-In;Kim, Bong-Joo;im, Jin-Man;Kwak, Eun-Gu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.5
    • /
    • pp.419-427
    • /
    • 2018
  • The purpose of this study is to recycle steel slag generated from the iron producing process and to use steel slag as a construction material which is currently landfilled Steel slag is subjected to aging treatment due to the problem of expansion and collapse when it reacts with water. The Slag Atomizing Technology (SAT) method developed to solve these problems of expanding collapse of steel slag. In this study, experimental study on the emergency repair mortar using the reducing slag, electric arc furnace slag and silicon manganese slag manufactured by the SAT method is Reduced slag was shown an accelerated hydration when it was replaced with rapidly-setting cement, and the rate of substitution was equivalent to 15%. It is shown that the electric furnace oxide slag is equivalent to 100% of the natural aggregate, and it can be replaced by 15-30% when the silicon manganic slag is substituted for the electric furnace oxide slag. With the above formulation, it was possible to design the rapidly repair mortar for road use. These recycling slags can contribute on achieving sustainability of construction industry by reducing the use of cement and natural aggregates and by reducing the generation of carbon dioxide and recycling waste slag.

An Experimental Study on Ternary System Concrete Using Blast-furnace Slag and Fly-ash (고로(高爐)슬래그 미분말(微粉末)과 플라이애쉬를 이용(利用)한 3성분계(性分系) 콘크리트의 기초물성(基礎物性)에 관한 실험적(實驗的) 연구(硏究))

  • Lee, Hwa-Joong;Hong, Chang-Woo;Kim, Kyeong-Jin
    • Resources Recycling
    • /
    • v.18 no.4
    • /
    • pp.31-37
    • /
    • 2009
  • The purpose of this study was to evaluate the effects of fly-ash and blast-furnace slag on strength development and durability of ternary blended concrete (TBC) and ordinary portland cement concrete as fly ash and slag contents. Main experimental variables were performed fly ash contents (0%, 10%) and slag contents (0%, 10%, 20%, 30%). The compressive and flexural strengths, chloride-ion rapid permeability and chemical attacks resistance were measured to analyze the characteristic of the developed TBC on hardened concrete. The test results showed that compressive and flexural strength of TBC increased as the slag contents increased from 0% to 30% at the long term of curing. It considers blast furnace slag used when fly ash content was up to 10%. The permeability resistance of TBC(fly ash 10%, blast 30%) was extremely good at the curing time 90 days. Also, the effects of added blast furnace slag on OPC and TBC were increased on the permeability and chemical attacks resistance.

The Influences of Cement Mortar Replaced by Paper Sludge Ash and Blast Furnace Slag (제지 슬러지 애쉬 고로슬래그 미분말로 혼합치환한 시멘트가 모르타르에 미치는 영향)

  • 소병현;이주나;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.3-9
    • /
    • 2002
  • Paper sludge ash was assured as material of a sort of pozzolan. For the reason of fluidity decrease caused by the strong absorption of paper stooge ash and the decrease of compressive strength in case of using over30% replacement by the weight of cement, paper sludge ash is not suitable for blending material. Therefore, it is necessary to find proper replacement ratios between paper sludge and blast furnace slag to insure compressive compensation and appropriate slump. Accordingly, as varied the blending ratios of paper sludge and blast furnace slag, testing mortar was made. This study was aimed to investigate the possibility of using blending replacement of paper sludge ash and blast furnace slag throughout compressive test, flow test, SEM(Scanning Eletron Microscope), MIP(Mercury Intrusion Porosity test), and TG-DTA(Thermal analysis).

  • PDF

Early Traffic Opening-Capable Continuous Multi-Layer Asphalt Pavement Maintenance Method Using Electric Arc Furnace Slag Aggregate and Emulsified Asphalt (전기로슬래그 혼합골재를 이용한 조기교통개방이 가능한 연속 적층식 상온 아스팔트포장 유지보수 공법)

  • Kim, Wan-Sang;Lee, Suck-Hong;Kwon, Mun-Hyun;Choi, Do-Sun
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.117-120
    • /
    • 2007
  • The main purpose of this paper is to introduce the early traffic opening-capable continuous multi-layer asphalt pavement maintenance method using electric arc furnace slag aggregate and emulsified asphalt to the actual construction sites. As well known, the previous surface treatment method of emulsified asphalt mixture have various shortcomings such as long work-time, traffic congestions, plastic deformation and poor evenness. Thus, the proposed method has enabled tile early traffic opening by utilizing the optimized emulsified asphalt after consideration of the climate and road conditions in Korea. The application of the electric furnace slag with $6\;{\sim}\;18\;mm$ thickness is helpful to become a environment-friendly construction method. And also, it has been improved enough to accommodate night-time works of mechanized construction activities for wearing course and control course.

  • PDF

A Study on Properties of High Strength and High Flowing Concrete using Blast Furnace Slag according tn the Temperature Condition (온도조건에 따른 고로슬래그 미분말을 사용한 고강도.고유동콘크리트의 특성에 관한 연구)

  • Kim, Yong-Ro;Jang, Jong-Ho;Khil, Bae-Su;Baik, Chul;Nam, Jae-Hyun;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.339-344
    • /
    • 2001
  • This study is to investigate properties of high strength.high flowing concrete using blast-furnace slag in temperature conditions of 5, 10, 15 and $20^{\circ}C$. The result of this study can be summarized as follows. 1) The use of blast-furnace slag leads to decrease of air content and increase of fluidity in the fresh concrete. 2) The early compressive strength of high strength.high flowing concrete containing blast-furnace slag is lower than the case with portland cement only. 3) The compressive strength development of incorporating in the concrete is poor at low temperature below about $15^{\circ}C$.

  • PDF

An Experimental Study on the Frost Resistance of High-Flowing Concrete Using Granulated Blast-Furnace Slag (고로슬래그 미분말을 사용한 고유동콘크리트의 내동해성에 관한 실험적 연구)

  • 김무한;권영진;강석표
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.2
    • /
    • pp.43-51
    • /
    • 2000
  • This study is to investigate for the frost resistance of high-flowing concrete using finely ground granulated blast-furnace slag with experimental parameters, such as type of binder, type of superplasticizer and method of curing. The resistance to freezing and thawing of high-flowing concrete by type of binder and superplasticizer is presented differently. Though the frost resistance of high-flowing concrete is satisfactory under standard condition, it is required that high-flowing concrete has entrained air like plain concrete. Because the critical spacing factor, being capacity of frost resistance, of high-flowing concrete is longer that of plain concrete, the frost resistance of high-flowing concrete, using finely ground granulated furnace blast slag, is superior to that of plain concrete.

The Effect of Ground Granulated Blast Furnace Slag Replacement on Alkali -Silica Reaction (고로슬래그 미분말 치환에 따른 알칼리-실리카 반응 팽창 저감효과)

  • Kim Ji Hyun;Jun Ssang Sun;Um Jang Sub;Jin Chi Sub
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.431-434
    • /
    • 2005
  • The effect of ground granulated blast furnace slag to prevent detrimental expansion due to alkali-silica reaction was investigated through the ASTM C 1260 method. This method is one of the most commonly used method because results can be obtained within 16 days. Reactive aggregate used is a metamorphic rock. The replacement ratios of portland cement by ground granulated blast furnace slag were 0, 15, 25, 35 and 55 percent, respectively. The results indicate that 35 percent replacement of portland cement by ground granulated blast furnace slag seems to be effective to reduce alkali-silica reaction expansion under this experimental conditions.

  • PDF