• Title/Summary/Keyword: Fungal infection

Search Result 363, Processing Time 0.036 seconds

Molecular Identification of Endophytic Fungi Isolated from Needle Leaves of Conifers in Bohyeon Mountain, Korea

  • Yoo, Jae-Joon;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.40 no.4
    • /
    • pp.231-235
    • /
    • 2012
  • Fungal endophytes are microfungi that live in plants without causing apparent symptoms of infection. This study was conducted to identify endophytic fungi isolated from leaves of coniferous trees in Bohyeon Mountain of Korea. We collected leaves of two species of coniferous trees, Pinus densiflora and Pinus koraiensis, from 11 sites in the study area. A total 58 isolates were obtained and identified using molecular and morphological characteristics. Four species of endophytic fungi were isolated from P. densiflora: Lophodermium conigenum, Leotiomycetes sp., Septoria pini-thunbergii, and Polyporales sp., while two fungal species were isolated from P. koraiensis: Eurotiomycetes sp. and Rhytismataceae sp. The most frequently isolated species were L. conigenum and S. pini-thunbergii.

Detection of Infectious Fungal Diseases of Frogs Inhabiting in Korea

  • Kim, Suk;Eom, Ahn-Heum;Park, Dae-Sik;Ra, Nam-Yong
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.10-12
    • /
    • 2008
  • In recent years, there has been a rapid decrease in amphibian populations worldwide, and infectious diseases have been associated with this decline. Diseased frogs inhabiting Korea were collected from fields, and the diseases were identified by morphological and molecular analyses. Two fungal diseases-saprolegniasis and chromomycosis-were detected in the frogs. Saprolegniasis caused by Saprolegnia spp. was found in Rana plancyi chosenica from Gangwon-do and Rana huanrenensis from Chungbuk. Chromomycosis, which is caused by infection with Cladosporium cladosporioides, was detected in Rana catesbeiana from Busan.

Development of System-Wide Functional Analysis Platform for Pathogenicity Genes in Magnaporthe oryzae

  • Park, Sook-Young;Choi, Jaehyuk;Choi, Jaeyoung;Kim, Seongbeom;Jeon, Jongbum;Kwon, Seomun;Lee, Dayoung;Huh, Aram;Shin, Miho;Jung, Kyungyoung;Jeon, Junhyun;Kang, Chang Hyun;Kang, Seogchan;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.9-9
    • /
    • 2014
  • Null mutants generated by targeted gene replacement are frequently used to reveal function of the genes in fungi. However, targeted gene deletions may be difficult to obtain or it may not be applicable, such as in the case of redundant or lethal genes. Constitutive expression system could be an alternative to avoid these difficulties and to provide new platform in fungal functional genomics research. Here we developed a novel platform for functional analysis genes in Magnaporthe oryzae by constitutive expression under a strong promoter. Employing a binary vector (pGOF1), carrying $EF1{\beta}$ promoter, we generated a total of 4,432 transformants by Agrobacterium tumefaciens-mediated transformation. We have analyzed a subset of 54 transformants that have the vector inserted in the promoter region of individual genes, at distances ranging from 44 to 1,479 bp. These transformants showed increased transcript levels of the genes that are found immediately adjacent to the vector, compared to those of wild type. Ten transformants showed higher levels of expression relative to the wild type not only in mycelial stage but also during infection-related development. Two transformants that T-DNA was inserted in the promotor regions of putative lethal genes, MoRPT4 and MoDBP5, showed decreased conidiation and pathogenicity, respectively. We also characterized two transformants that T-DNA was inserted in functionally redundant genes encoding alpha-glucosidase and alpha-mannosidase. These transformants also showed decreased mycelial growth and pathogenicity, implying successful application of this platform in functional analysis of the genes. Our data also demonstrated that comparative phenotypic analysis under over-expression and suppression of gene expression could prove a highly efficient system for functional analysis of the genes. Our over-expressed transformants library would be a valuable resource for functional characterization of the redundant or lethal genes in M. oryzae and this system may be applicable in other fungi.

  • PDF

Multi-host Pathogenesis by Pseudomonas aeruginosa and Use of Drosophila melanogaster as a New Model Host

  • Cho You-Hee;Lau Gee;Rahme Laurence
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.40-50
    • /
    • 2002
  • Fruit fly, Drosophila melanogaster has developed efficient immune mechanisms to prevent microbial infection, which are consisted of cellular and humoral responses. During the systemic or local infection, two distinct pathways (Toll and Imd) play major roles in antimicrobial peptide synthesis. The Toll pathway is required to defend Gram-positive bacterial and fungal infections, whereas the Imd pathway is important in Gram-negative bacterial infection. We have shown that the infection of the opportunistic Gram-negative bacterium, Pseudomonas aeruginosa strain PA14 (PA14) into fly dorsal thorax can kill the flies within 48 h ($100\%$ mortality) in our optimized infection condition, suggesting that the PA14 strain can cause disease progress in fly model system. We found that flies carrying a constitutively activated mutant form of the Toll receptor $(Tl^{10b})$ showed increased resistance to P. aeruginosa infection and that flies carrying mutations in the Toll signaling pathway as well as in the Imd signaling pathway was more susceptible to PA14 infection. All these results imply that the Toll pathway might be important in the resistance to this pathogenic Gram-negative bacterial infection.

  • PDF

Survey of Fungal Infection and Fusarium Mycotoxins Contamination of Maize during Storage in Korea in 2015 (2015년 국내산 저장 옥수수에서의 후자리움 독소 오염 및 감염 곰팡이 조사)

  • Kim, Yangseon;Kang, In Jeong;Shin, Dong Bum;Roh, Jae Hwan;Heu, Sunggi;Shim, Hyeong Kwon
    • Research in Plant Disease
    • /
    • v.23 no.3
    • /
    • pp.278-282
    • /
    • 2017
  • Maize is one of the most cultivated cereals as a staple food in the world. The harvested maize is mainly stored after drying, but its quality and nutrition could be debased by fungal spoilage and mycotoxin contamination. In this study, we surveyed mycotoxin contamination fungal infection of maize kernels that were stored for almost one year after harvest in 2015. The amount of deoxynivalenol and zearalenone detected were higher than the other mycotoxin, such as aflatoxin, ochratoxin, fumonisin and T-2 toxin. In particular, level of deoxynivalenol was detected as $1200{\pm}610{\mu}g/kg$ in small size kernels, which was four to six times higher than the large and the medium size kernels. Moreover, the amount of deoxynivalenol, zearalenone, and fumonisin were increased with discolored kernels. 10 species including Fusarium spp., Aspergillus spp. and Penicillium spp. were isolated from the maize kernels. F. graminearum was predominant in the discolored kernels with detection rates of 60% (red) and 40% (brown). Our study shows that the mycotoxin contents of stored maize can be increased by discolored maize kernels mixed. Therefore elimination of the contaminated maize kernels will help prevent fungal infection and mycotoxin contamination in stored maize.

Genome-Wide Analysis of Hypoxia-Responsive Genes in the Rice Blast Fungus

  • Choi, Jaehyuk;Chung, Hyunjung;Lee, Gir-Won;Koh, Sun-Ki;Chae, Suhn-Kee;Lee, Yong-Hwan
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.13-13
    • /
    • 2015
  • Rice blast fungus, Magnaporthe oryzae, is the most destructive pathogen of rice in the world. This fungus has a biotrophic phase early in infection and switches to a necrotrophic lifestyle after host cell death. During the biotrophic phase, the fungus competes with host for nutrients and oxygen. Continuous uptake of oxygen is essential for successful establishment of blast disease of this pathogen. Here, we report transcriptional responses of the fungus to oxygen limitation. Transcriptome analysis using RNA-Seq identified 1,047 up-regulated genes in response to hypoxia. Those genes were involved in mycelial development, sterol biosynthesis, and metal ion transport based on hierarchical GO terms and well-conserved among three different fungal species. In addition, null mutants of three hypoxia-responsive genes were generated and tested for their roles on fungal development and pathogenicity. The mutants for a sterol regulatory element-binding protein gene, MoSRE1, and C4 methyl sterol oxidase gene, ERG25, exhibited increased sensitivity to hypoxia-mimetic agent, increased conidiation, and delayed invasive growth within host cells, suggesting important roles in fungal development. However, such defects did not cause any significant decrease in disease severity. The other null mutant for alcohol dehydrogenase gene, MoADH1, showed no defect in the hypoxia-mimic condition and fungal development. Taken together, this comprehensive transcriptional profiling in response to a hypoxia condition with experimental validations would provide new insights on fungal development and pathogenicity in plant pathogenic fungi.

  • PDF

A Short-chain Dehydrogenase/reductase Gene is Required for Infection-related Development and Pathogenicity in Magnaporthe oryzae

  • Kwon, Min-Jung;Kim, Kyoung-Su;Lee, Yong-Hwan
    • The Plant Pathology Journal
    • /
    • v.26 no.1
    • /
    • pp.8-16
    • /
    • 2010
  • The phytopathogenic fungus Magnaporthe oryzae is a major limiting factor in rice production. To understand the genetic basis of M. oryzae pathogenic development, we previously analyzed a library of T-DNA insertional mutants of M. oryzae, and identified ATMT0879A1 as one of the pathogenicity-defective mutants. Molecular analyses and database searches revealed that a single TDNA insertion in ATMT0879A1 resulted in functional interference with an annotated gene, MGG00056, which encodes a short-chain dehydrogenase/reductase (SDR). The mutant and annotated gene were designated as $MoSDR1^{T-DNA}$ and MoSDR1, respectively. Like other SDR family members, MoSDR1 possesses both a cofactor-binding motif and a catalytic site. The expression pattern of MoSDR1 suggests that the gene is associated with pathogenicity and plays an important role in M. oryzae development. To understand the roles of MoSDR1, the deletion mutant ${\Delta}Mosdr1$ for the gene was obtained via homology-dependent gene replacement. As expected, ${\Delta}Mosdr1$ was nonpathogenic; moreover, the mutant displayed pleiotropic defects in conidiation, conidial germination, appressorium formation, penetration, and growth inside host tissues. These results suggest that MoSDR1 functions as a key metabolic enzyme in the regulation of development and pathogenicity in M. oryzae.

Development of a Multiplex PCR Method to Detect Fungal Pathogens for Quarantine on Exported Cacti

  • Cho, Hyun ji;Hong, Seong Won;Kim, Hyun-ju;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.32 no.1
    • /
    • pp.53-57
    • /
    • 2016
  • Major diseases in grafted cacti have been reported and Fusarium oxysporum, Bipolaris cactivora, Phytophthora spp. and Collectotrichum spp. are known as causal pathogens. These pathogens can lead to plant death after infection. Therefore, some European countries have quarantined imported cacti that are infected with specific fungal pathogens. Consequently, we developed PCR detection methods to identify four quarantined fungal pathogens and reduce export rejection rates of Korean grafted cacti. The pathogen specific primer sets F.oF-F.oR, B.CF-B.CR, P.nF-P.nR, and P.cF-P.CR were tested for F. oxysporum, B.cactivora, P. nicotinae, and P. cactorum, respectively. The F.oF-F.oR primer set was designed from the Fusarium ITS region; the B.CF-B.CR and P.nF-P.nR primers respectively from Bipolaris and Phytophthora ITS1; and the P.cF-P.CR primer set from the Ypt1protein gene region. The quarantine fungal pathogen primer pairs were amplified to the specific number of base pairs in each of the following fungal pathogens: 210-bp (F. oxysporum), 510-bp (B. cactivora), 313-bp (P. nicotinae), and 447-bp (P. cactorum). The detection limit for the mono- and multiplex PCR primer sets was 0.1 ng of template DNA under in vitro conditions. Therefore, each primer set successfully diagnosed contamination of quarantine pathogens in export grafted cacti. Consequently, our methodology is a viable tool to screen contamination of the fungal pathogen in exported grafted cacti.

Toxigenic Mycobiota of Small Grain Cereals in Korea

  • Lee, Theresa
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.33-33
    • /
    • 2016
  • Mycotoxins are toxic secondary metabolites produced by fungi. They can be present in where agricultural-based commodities are contaminated with toxigenic fungi. These mycotoxins cause various toxicoses in human and livestock when consumed. Small grains including corn, barley, rice or wheat are frequently contaminated with mycotoxins due to infection mainly by toxigenic Fusarium species and/or under environment favorable to fungal growth. One of the most well-known Fusarium toxin groups in cereals is trichothecenes consisting of many toxic compounds. Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin, and various derivatives belong to this group. Zearalenone and fumonisin (FB) are also frequently produced by many species of the same genus. In order to monitor Korean cereals for contamination with Fusarium and other mycotoxigenic fungal species as well, barley, corn, maize, rice grains, and soybean were collected from fields at harvest or during storage for several years. The fungal colonies outgrown from the grain samples were identified based on morphological and molecular characteristics. Trichothecene chemotypes of Fusarium species or presence of FB biosynthetic gene were determined using respective diagnostic PCR to predict possible toxin production. Heavy grain contamination with fungi was detected in barley, rice and wheat. Predominant fungal genus of barley and wheat was Alternaria (up to 90%) while that of rice was Fusarium (~40%). Epicoccum also appeared frequently in barley, rice and wheat. While frequency of Fusarium species in barley and wheat was less than 20%, the genus mainly consisted of Fusarium graminearum species complex (FGSC) which known to be head blight pathogen and mycotoxin producer. Fusarium composition of rice was more diverse as FGSC, Fusarium incarnatum-equiseti species complex (FIESC), and Fusarium fujikuroi species complex (FFSC) appeared all at considerable frequencies. Prevalent fungal species of corn was FFSC (~50%), followed by FGSC (<30%). Most of FFSC isolates of corn tested appeared to be FB producer. In corn, Fusarium graminearum and DON chemotype dominate within FGSC, which was different from other cereals. Soybeans were contaminated with fungi less than other crops and Cercospora, Cladosporium, Alternaria, Fusarium etc. were detected at low frequencies (up to 14%). Other toxigenic species such as Aspergillus and Penicillium were irregularly detected at very low frequencies. Multi-year survey of small grains revealed dominant fungal species of Korea (barley, rice and wheat) is Fusarium asiaticum having NIV chemotype.

  • PDF

Entomopathogenic fungal infection of Allomyrina dichotoma in mass breeding conditions

  • Kwak, Kyu-Won;Nam, Sung-Hee;Choi, Hyo-Won;Choi, Ji-Young;Lee, Seok-Hyun;Kim, Hong-Geun;Han, Myung-Sae;Park, Kwan-Ho
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.31 no.1
    • /
    • pp.20-24
    • /
    • 2015
  • Increased use of rhinoceros beetles (Allomyrina dichotoma ) for food and medicine, and their elevated value as pets has led to an increase in the number of their breeding farms. Mass breeding of the insects in these farms leads to entomological diseases. In this study, we investigate cannibalism resulting from overcrowded breeding of A. dichotoma larvae, as well as secondary fungal infections in epidermal wounds in the surviving larvae. Some of the fungi detected in the present study showed entomopathogenicity, and the larvae showed different times of death. In particular, larvae infected with Clonostachys sp., an endophytic plant fungus, grew for a long time after infection, but died without pupating.