• Title/Summary/Keyword: Fungal cell wall

Search Result 101, Processing Time 0.024 seconds

Baicalin Production in Transformed Hairy Root Clones of Scutellaria baicalensis

  • Hwang, Sung-Jin
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.105-109
    • /
    • 2006
  • A transformed hairy root clone of Scutellaria baicalensis was established following infection with Agrobacterium rhizogenes ATCC15834. Three root clones of S baicalensis were selected by growth habit and baicalin content. The most active strain-the SR-03 clone-was examined for its growth and baicalin content under various culture conditions. The root growth and baicalin content were maximized in a Schenk and Hildebrandt medium supplemented with 4 and 6% sucrose, respectively. The accumulation of baicalin in transformed hairy roots was enhanced through exposure to various elicitors. Elicitation was attained by the addition of methyl jasmonate, salicylic acid, and various concentrations of fungal cell wall elicitors to the medium. The accumulation of baicalin in the elicited cultures ranged from 10.5 to 18.3 mg/g dry weight of the roots, which was 1.5- to 3-fold the amount attained in controls.

Effect of $18{\beta}$-Glycyrrhetinic Acid on Septic Arthritis Caused by Candida albicans ($18{\beta}$-Glycyrrhetinic Acid의 항 감염성관절염효과)

  • Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.51 no.6
    • /
    • pp.476-481
    • /
    • 2007
  • A polymorphic fungus, Candida albicans, causes various forms of infections such as disseminated candidiasis and vaginitis. Recent reports indicate that the fungus is a main etiological agent for the arthritis. In search of new sources for treatment of the fungal arthritis, we examined $18{\beta}$-glycyrrhetinic acid ($18{\beta}$-GA) against C. albicans-caused septic arthritis. The compound is isolated from Glycyrrhizae Radix that is known to have various immunomodulating activities and is one of the most popular herbal medicines. For induction of animal model of a septic arthritis, mice were given an emulsion form of C. albicans cell wall mixed with Complete Freund's Adjuvant (CFA) via footpad-injection. To determine prophylactic and therapeutic effects, the component was given to the animals before or after the induction of the arthritis, respectively. Data showed that intraperitoneal administration of $18{\beta}$-GA resulted in reduction of the inflammation, indicating the component had both prophylactic and therapeutic activities. For investigation of mechanism of the $18{\beta}$-GA, inhibitory effects on NO (nitiric oxide) and on T-lymphocyte proliferation were determined. Results demonstrated that $18{\beta}$-GA suppressed NO production from LPS (lipopolysaccharide)-treated macrophages and also inhibited proliferation of Con A (concanavalin A)activated T-cells. Taken together, $18{\beta}$-GA, a pentacyclic triterpene, has anti-arthritic activity against C. albicans-caused septic arthritis, possibly by blocking NO production and T-cell suppression.

Chitinase and Laccase Expression during the Fruit Body Development in Coprinellus Congergatus (먹물버섯의 생성.자가소화 과정에서 laccase 및 chitinase의 발현)

  • Kim, Yun-Jung;Park, Hye-Yeon;Cho, Chung-Won;Choi, Hyoung-T.
    • Korean Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.235-237
    • /
    • 2006
  • When fruit bodies of Coprinellus congregatus were matured, they were autolysed to form black ink. During the developmental changes, cell walls of basidia were degraded. Laccase formed melanin which was the typical black pigment of fungi, and chitinase hydrolyzed the chitin which was a component of fungal cell wall. When laccase and chitinase genes were used as the probe for the Northern analysis to confirm their expression during the fruit body development, both gene expressions were increased as the mushroom was getting matured.

Isolation of Bacteria Associated with the King Oyster Mushroom, Pleurotus eryngii

  • Lim, Yun-Jung;Ryu, Jae-San;Shi, Shanliang;Noh, Won;Kim, Eon-Mi;Le, Quy Yang;Lee, Hyun-Sook;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.36 no.1
    • /
    • pp.13-18
    • /
    • 2008
  • Eight distinct bacteria were isolated form diseased mycelia of the edible mushroom, Pleurotus eryngii. 16S rDNA sequence analysis showed that the isolates belonged to a variety of bacterial genera including Bacillus (LBS5), Enterobacter (LBS1), Sphingomonas (LBS8 and LBS10), Staphylococcus (LBS3, LBS4 and LBS9) and Moraxella (LBS6). Among them, 4 bacterial isolates including LBS1, LBS4, LBS5, and LBS9 evidenced growth inhibitory activity on the mushroom mycelia. The inhibitory activity on the growth of the mushroom fruiting bodies was evaluated by the treatment of the bacterial culture broth or the heat-treated cell-free supernatant of the broth. The treatment of the culture broths or the cell-free supernatants of LBS4 or LBS9 completely inhibited the formation of the fruiting body, thereby suggesting that the inhibitory agent is a heat-stable compound. In the case of LBS5, only the bacterial cell-containing culture broth was capable of inhibiting the formation of the fruiting body, whereas the cell-free supernatant did not, which suggests that an inhibitory agent generated by LBS5 is a protein or a heat-labile chemical compound, potentially a fungal cell wall-degrading enzyme. The culture broth of LBS1 was not inhibitory. However, its cell-free supernatant was capable of inhibiting the formation of fruiting bodies. This indicates that LBS1 may produce an inhibitory heat-stable chemical compound which is readily degraded by its own secreted enzyme.

Identification and Expression Patterns of fvexpl1, an Expansin-Like Protein-Encoding Gene, Suggest an Auxiliary Role in the Stipe Morphogenesis of Flammulina velutipes

  • Huang, Qianhui;Han, Xing;Mukhtar, Irum;Gao, Lingling;Huang, Rongmei;Fu, Liping;Yan, Junjie;Tao, Yongxin;Chen, Bingzhi;Xie, Baogui
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.622-629
    • /
    • 2018
  • Expansins are cell wall proteins that mediate cell wall loosening and promote specific tissue and organ morphogenesis in plants and in some microorganisms. Unlike plant expansins, the biological functions of fungal expansin-like proteins have rarely been discussed. In the present study, an expansin-like protein-encoding fvexpl1 gene, was identified from Flammulina velutipes by using local BLAST. It consisted of five exons with a total length of 822 bp. The deduced protein FVEXPL1 contained 274 amino acids with a predicted molecular mass and isoelectric point of 28,589 Da and pH 4.93, respectively. The first 19 amino acids from the N terminal are the signal peptide. Phylogenetic analysis and multiple protein alignment indicated FVEXPL1 was an expansin-like protein. The expression level of fvexpl1 gene in the stipe was significantly higher than that in the mycelia, primordia, and cap. However, the expression level of fvexpl1 gene was significantly higher in the fast elongation region of the stipe as compared with the slow elongation region. Expression analysis indicated that fvexpl1 gene might have an auxiliary role in the stipe morphogenesis of F. velutipes.

Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt

  • El_Komy, Mahmoud H.;Saleh, Amgad A.;Eranthodi, Anas;Molan, Younes Y.
    • The Plant Pathology Journal
    • /
    • v.31 no.1
    • /
    • pp.50-60
    • /
    • 2015
  • The use of novel isolates of Trichoderma with efficient antagonistic capacity against Fusarium oxysporum f. sp. lycopersici (FOL) is a promising alternative strategy to pesticides for tomato wilt management. We evaluated the antagonistic activity of 30 isolates of T. asperellum against 4 different isolates of FOL. The production of extracellular cell wall degrading enzymes of the antagonistic isolates was also measured. The random amplified polymorphic DNA (RAPD) method was applied to assess the genetic variability among the T. asperellum isolates. All of the T. asperellum isolates significantly reduced the mycelial growth of FOL isolates but the amount of growth reduction varied significantly as well. There was a correlation between the antagonistic capacity of T. asperellum isolates towards FOL and their lytic enzyme production. Isolates showing high levels of chitinase and ${\beta}$-1,3-glucanase activities strongly inhibited the growth of FOL isolates. RAPD analysis showed a high level of genetic variation among T. asperellum isolates. The UPGMA dendrogram revealed that T. asperellum isolates could not be grouped by their antagonistic behavior or lytic enzymes production. Six isolates of T. asperellum were highly antagonistic towards FOL and potentially could be used in commercial agriculture to control tomato wilt. Our results are consistent with the conclusion that understanding the genetic variation within Trichoderma isolates and their biochemical capabilities are required for the selection of effective indigenous fungal strains for the use as biocontrol agents.

Confirmation of Non-Siderophore Antifugal Substance and Cellulase from Bacillus lichemiformis Kll Containing Antagonistic Ability and Plant Growth Promoting Activity (생물방제능과 식물성장촉진능을 동시에 가지는 Bacillus licheniformis K11의 non-siderophore 항진균 물질 및 cellulase의 생산조건 확인)

  • Woo, Sang-Min;Kim, Sang-Dal
    • Journal of Life Science
    • /
    • v.17 no.7 s.87
    • /
    • pp.983-989
    • /
    • 2007
  • Bacillus lichemiformis Kll, a plant growth promoting rhizobacterium was reported as a producer of auxin, siderophore, as well as antifungal cellulase under some culture conditions. In vitro test, B. licheniformis Kll represented excellent antagonistic ability against Fusarium oxyspoum (KACC 40037), and showed broad spectrum against other phytopathogenic fungi. B. licheniformis Kll had cellulolytic activity toward not only carboxymethyl-cellulose (CMC) but also insoluble cellulose, such as fungal cell wall cellulose, filter paper (Whatman No. 1), and Avicel. In addition, we confirmed antifungal substance production by butanol-extract methods. The strain produced optimally the antifungal substance when it was cultivated at pH 9.0, 30${\circ}$C for 4 days on nutrient medium. The biological control mechanisms of B. lichemiformis Kll were caused by antifungal substance, cellulase and siderophore against phytopathogenic fungi.

Morphological Characteristics of Tricholoma matsutake Ectomycorrhiza (송이 외생균근(外生菌根)의 형태적(形態的) 특징(特徵))

  • Koo, Chang-Duck
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.1 s.158
    • /
    • pp.16-20
    • /
    • 2005
  • Tricholoma matsutake ectomycorrhizas are unique in their morphology: not bifurcated broom shaped roots with not easily wettable brilliant and profuse white hyphae. To understand these characteristics the ectomycorrhizas were investigated with electron microscopy. T. matsutake ectomycorrhiza have thin mantle and typical Hartig net development in the epidermis and cortex, but no fungal mantle on the root apex. There were no penetrating hyphae inside of the cells of either epidermis, cortex or stele. Inside of the walls of epidermis and cortex cells are lined with ca. $2{\mu}m$ hemispherical amyloplasts. The brilliant hyphal surface was covered with various fine amorphous granules. The hyphal cell wall was thin membrane less than $0.3{\mu}m$ thick. There is no clamp connection on the hyphae. This thin membraneous cell wall with high elasticity can be related to survival strategy of the species without plasmolysis under frequent soil water stress environment. And the coarse hyphal surface with some water repellency can control sudden inrush of water of the hyphae with an extremely low osmotic potential. It is concluded that no mantle on the tip can induce mycorrhizas not bifurcated and that finely coarse surface of T. matsutake hyphae can make the hyphae brilliantly white but less wetted.

Recent Advances in the Studies of Self-Incompatibility of plants (식물의 자가불화합성, 최근의 진보)

  • 한창열;한지학
    • Korean Journal of Plant Tissue Culture
    • /
    • v.21 no.5
    • /
    • pp.253-275
    • /
    • 1994
  • Many flowering plants possess genetically controlled self -incompatibility (SI) system that prevents inbreeding and promotes outcrosses. SI is usually controlled by a single, multiallelic S-locus. In gametophytically controlled system, SI results when the S-allele of the pollen is matched by one of the two S-alleles in the style, while in the sporophytic system self-incompatible reaction occurs by the interaction between the pistil genotype and genotype of, not the pollen, but the pollen parent In the former system the self-incompatible phenotype of pollen is determined by the haploid genome of the pollen itself but in the latter the pollen phenotype is governed by the genotype of the pollen parent along with the occurrence of either to-dominant or dominant/recessive allelic interactions. In the sporophytic type the inhibition reaction occurs within minutes following pollen-stigma contact, the incompatible pollen grains usually failing to germinate, whereas in gametophytic system pollen tube inhibition takes place during growth in the transmitting tissue of the style. Recognition and rejection of self pollen are the result of interaction between the S-locus protein in the pistil and the pollen protein. In the gametophytic SI the S-associated glycoprotein which is similar to the fungal ribonuclease in structure and function are localized at the intercellular matrix in the transmitting tissue of the style, with the highest concentration in the collar of the stigma, while in the sporophytic SI deposit of abundant S-locus specific glycoprotein (SLSG).is detected in the cell wall of stigmatic papillae of the open flowers. In the gametophytic system S-gene is expressed mostly at the stigmatic collar the upper third of the style length and in the pollen after meiosis. On the other hand, in the sporophytic SI S-glycoprotein gene is expressed in the papillar cells of the stigma as well as in e sporophytic tape is cells of anther wall. Recognition and rejection of self pollen in the gametophytic type is the reaction between the ribonuclease in the transmitting tissue of the style and the protein in the cytoplasm of pollen tube, whereas in the sporophytic system the inhibition of selfed pollen is caused by the interaction between the Sycoprotein in the wall of stigmatic papillar cell and the tapetum-origin protein deposited on the outer wall of the pollen grain. The claim that the S-allele-associated proteins are involved in recognition and rejection of self pollen has been made merely based on indirect evidence. Recently it has been verified that inhibition of synthesis of S$_3$ protein in Petunia inflata plants of S$_2$S$_3$ genotype by the antisense S$_3$ gene resulted in failure of the transgenic plant to reject S$_3$ pollen and that expression of the transgenic encoding S$_3$ protein in the S$_1$S$_2$ genotype confers on the transgenic plant the ability to reject S$_3$ pollen. These finding Provide direct evidence that S-proteins control the s elf-incompatibility behavior of the pistil.

  • PDF

Characterization of the Rosellinia necatrix Transcriptome and Genes Related to Pathogenesis by Single-Molecule mRNA Sequencing

  • Kim, Hyeongmin;Lee, Seung Jae;Jo, Ick-Hyun;Lee, Jinsu;Bae, Wonsil;Kim, Hyemin;Won, Kyungho;Hyun, Tae Kyung;Ryu, Hojin
    • The Plant Pathology Journal
    • /
    • v.33 no.4
    • /
    • pp.362-369
    • /
    • 2017
  • White root rot disease, caused by the pathogen Rosellinia necatrix, is one of the world's most devastating plant fungal diseases and affects several commercially important species of fruit trees and crops. Recent global outbreaks of R. necatrix and advances in molecular techniques have both increased interest in this pathogen. However, the lack of information regarding the genomic structure and transcriptome of R. necatrix has been a barrier to the progress of functional genomic research and the control of this harmful pathogen. Here, we identified 10,616 novel full-length transcripts from the filamentous hyphal tissue of R. necatrix (KACC 40445 strain) using PacBio single-molecule sequencing technology. After annotation of the unigene sets, we selected 14 cell cycle-related genes, which are likely either positively or negatively involved in hyphal growth by cell cycle control. The expression of the selected genes was further compared between two strains that displayed different growth rates on nutritional media. Furthermore, we predicted pathogen-related effector genes and cell wall-degrading enzymes from the annotated gene sets. These results provide the most comprehensive transcriptomal resources for R. necatrix, and could facilitate functional genomics and further analyses of this important phytopathogen.