Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.09.2014.0087

Characterization of Novel Trichoderma asperellum Isolates to Select Effective Biocontrol Agents Against Tomato Fusarium Wilt  

El_Komy, Mahmoud H. (Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University)
Saleh, Amgad A. (Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University)
Eranthodi, Anas (Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University)
Molan, Younes Y. (Department of Plant Protection, College of Food and Agricultural Sciences, King Saud University)
Publication Information
The Plant Pathology Journal / v.31, no.1, 2015 , pp. 50-60 More about this Journal
Abstract
The use of novel isolates of Trichoderma with efficient antagonistic capacity against Fusarium oxysporum f. sp. lycopersici (FOL) is a promising alternative strategy to pesticides for tomato wilt management. We evaluated the antagonistic activity of 30 isolates of T. asperellum against 4 different isolates of FOL. The production of extracellular cell wall degrading enzymes of the antagonistic isolates was also measured. The random amplified polymorphic DNA (RAPD) method was applied to assess the genetic variability among the T. asperellum isolates. All of the T. asperellum isolates significantly reduced the mycelial growth of FOL isolates but the amount of growth reduction varied significantly as well. There was a correlation between the antagonistic capacity of T. asperellum isolates towards FOL and their lytic enzyme production. Isolates showing high levels of chitinase and ${\beta}$-1,3-glucanase activities strongly inhibited the growth of FOL isolates. RAPD analysis showed a high level of genetic variation among T. asperellum isolates. The UPGMA dendrogram revealed that T. asperellum isolates could not be grouped by their antagonistic behavior or lytic enzymes production. Six isolates of T. asperellum were highly antagonistic towards FOL and potentially could be used in commercial agriculture to control tomato wilt. Our results are consistent with the conclusion that understanding the genetic variation within Trichoderma isolates and their biochemical capabilities are required for the selection of effective indigenous fungal strains for the use as biocontrol agents.
Keywords
cell wall degrading enzymes; Fusarium wilt; molecular markers; mycoparasitism; T. asperellum;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saber, W. I. A., Abd El-Hai, K. M. and Ghoneem, K. M. 2009. Synergistic effect of Trichoderma and Rhizobium on Both Biocontrol of chocolate spot disease and induction of nodulation, physiological activities and productivity of Vicia faba. Res. J. Microbiol. 4:286-300.   DOI
2 Sambrook, H., Fritch, J. and Maniatis, T. 1989. Molecular cloning, A laboratory manual, 2ed Ed., Cold Spring Harbor Laboratory, New York.
3 SAS Institute Inc., 2003. SAS/STATA Guide for Personal Computers Version 9.1 edition. SAS Institute, Carry NC, USA.
4 Segarra, G., Casanova, E., Aviles, M. and Trillas, I. 2010. Trichoderma apserellum strain T34 controls Fusarium wilt disease in tomato plants in soilless culture through competition for iron. Microb. Ecol. 59:141-149.   DOI
5 Sharma, P. 2011. Complexity of Trichoderma-Fusarium interaction and manifestation of biological control. Aust. J. Crop Sci. 5:1027-1038.
6 Sharma, K., Mishira, A. K. and Misra, R. S. 2009. Morphological, biochemical and molecular characterization of Trichoderma harzianum isolates for their efficacy as biocontrol agents. J. Phytopathol. 157:51-56.   DOI   ScienceOn
7 Simon, C. and Sivasithaparam, M. 1988. Interaction among Gaeumannomyces graminum var. tritci, Trichoderma koningii and soil bacteria. Can. J. Microbiol. 34:871-876.   DOI
8 Sivan, A. and Chet, I. 1989. Degradation of fungal cell walls by lytic enzymes of Trichoderma harzianum. J. General Microbiol. 135:675-682.
9 Tondje, P. R., Roberts, D. P., Bon, M. C., Widmer, T., Samuels, G. J., Ismaiel, A., Begoude, A. D., Tchana, T., Nyemb-Tshomb, E., Ndoumbe-Nkeng, M., Bateman, R., Fontem, D. and Hebbar, K. P. 2007. Isolation and identification of mycoparasitic isolates of Trichoderma asperellum with potential for suppression of black pod disease of cacao in Cameroon. Biol. Control 43:202-212.   DOI   ScienceOn
10 Trillas, M. I., Casanova, E., Cotxarrera, L., Ordovas, J., Borrero, C. and Aviles, M. 2006. Composts from agricultural waste and the Trichoderma asperellum strain T-34 suppress Rhizoctonia solani in cucumber seedlings. Biol. Control 39:32-38.   DOI   ScienceOn
11 Verma, M., Brar, S. K., Tyagi, R. D., Surampalli, R. Y. and Valero, J. R. 2007. Antagonistic fungi, Trichoderma spp., Panoply of biological control. Biochemical Engineering Journal 37:1-20.   DOI   ScienceOn
12 Viterbo, A., Ramot, O., Chermin, L. Y. and Chet, I. 2002. Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie van Leeuwenhoek 81:549-556.   DOI
13 Williams, J. G. K., Kubelik, A. R., Livak, K. J., Rafalski, J. A. and Tingey, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic. Acids Res. 18:6531-6535.   DOI
14 Woo, S. L., Scala, F., Ruocco, M. and Lorito, M. 2006. The molecular biology of the interactions between Trichoderma spp., phytopathogenic fungi, and plants. Phytopathology 96:181-185.   DOI   ScienceOn
15 Zhang, F., Zhu, Z., Yang, X., Ran, W. and Shen, Q. 2013. Trichoderma harzianum T-E5 significantly affects cucumber root exudates and fungal community in the cucumber rhizosphere. Appl. Soil Ecol. 72:41-48.   DOI   ScienceOn
16 Benitez, T., Rincon, A. M., Limon, M. C. and Codon, A. C. 2004. Biocontrol mechanisms of Trichoderma strains. Int. Microbiol. 7:249-260.
17 Abo-Elyousr, K. A. M., Sobhy, I., Abdel-Hafez, I. and Abdel-Rahim, I. 2014. Isolation of Trichoderma and evaluation of their antagonistic potential against Alternaria porri. J. Phytpathol. 162:567-574.   DOI   ScienceOn
18 Anderson, J. A., Churchill, G. A., Autrique, J. E., Tanksley, S. D. and Sorrells, M. E. 1993. Optimizing parental selection for genetic linkage maps. Genome 36:181-186.   DOI
19 Arisan-Atac, I., Heidenreich, E. and Kubicek, C. P. 1995. Randomly amplified polymorphic DNA fingerprinting identifies subgroups of Trichoderma viride and other Trichoderma sp. capable of chestnut blight biocontrol. FEMS Microbiol. Lett. 126:249-256.   DOI
20 Avis, T. J., Hamelin, R. C. and Belanger, R. R. 2001. Approaches to molecular characterization of fungal biocontrol agents: some case studies. Can. J. Plant Pathol. 23:8-12.   DOI
21 Chaverri, P., Castlebury, L. A., Samuels, C. J. and Geiser, D. M. 2003. Multi locus phylogenetic structure within the Trichoderma harzianum/Hypocrea lixii complex. Mol. Phylogenet. Evol. 27:302-313.   DOI   ScienceOn
22 Chet, I. and Inbar, J. 1994. Biological control of fungal pathogens. Appl. Biochem. Biotechnol. 48:37-43.   DOI
23 Consolo, V. F., Monaco, C. I., Cordo, C. A. and Salerno, G. L. 2012. Characterization of novel Trichoderma spp. isolates as a search for effective biocontrollers of fungal diseases of economically important crops in Argentina. World J. Microbiol. Biotechnol. 28:1389-1398.   DOI   ScienceOn
24 Cook, R. J. 1993. Making greater use of introduced micro-organisms for biological control of plant pathogens. Annu. Rev. Phytopathol. 31:53-80.   DOI   ScienceOn
25 Cotxarrera, L., Trillas-Gay, M. I., Steinberg, C. and Alabouvette, C. 2002. Use of sewage sludge compost and Trichoderma asperellum isolates to suppress Fusarium wilt of tomato. Soil Biol. Biochem. 34:467-476.   DOI   ScienceOn
26 Dana, M. M., Limon, M. C., Mejias, R., Mach, R. L., Benitez, T., Pintor-Toro, J. A. and Kubicek, C. P. 2001. Regulation of chitinase 33 (chit33) gene expression in Trichoderma harzianum. Curr. Genet. 38:335-342.   DOI
27 Elad, Y. and Chet, I. 1983. Improved selective media for isolation of Trichoderma spp. or Fusarium spp. Phytoparasitica 11:55-58.   DOI
28 de los Santos-Villalobos, S., Guzman-Ortiz, D. A., Gomez-Lim, M. A., Delano-Frier, J. P., de-Folter, S., Sanchez-Garia, P. and Pena-Cabriales, J. J. 2013. Potential use of Trichoderma asperellum (Samuels, Liechfeldt et Nirenberg) T8a as a biological control agent against anthracnose in mango (Mangifera indica L.). Biol. Control 64:37-44.   DOI   ScienceOn
29 Dubey, S. C., Suresh, M. and Singh, B. 2007. Evaluation of Trichoderma species against Fusarium oxysporum f.sp. ciceris for integrated management of chickpea wilt. Biol. Control 40:118-127.   DOI   ScienceOn
30 Edington, L. V., Khew, K. L. and Barron, G. I. 1971. Fungitoxic spectrum of benzimidazole compounds. Phytopathology 61:42-44.   DOI
31 El-Hasan, A., Walker, F. and Buchenauer, H. 2008. Trichoderma harzianum and its metabolite 6-Pentyl-alpha-pyrone suppress fusaric acid produced by Fusarium moniliforme. J. Phytopathol. 156:79-87.   DOI   ScienceOn
32 El-Katatny, M. H., Somitsch, W., Robra, K. H., El-Katatny, M. S. and Gubitz, G. M. 2000. Production of Chitinase and ${\beta}$-1,3 glucanase by Trichoderma harzianum for Control of the Phytopathogenic Fungus Sclerotium rolfsii. Food Technol. Biotechnol. 38:173-180.
33 Gajera, H. P. and Vakharia, D. N. 2010. Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Tieghem. Physiol. Mol. Plant P. 74:274-282.   DOI   ScienceOn
34 Goes, L. B., Costa, A. B. L., Freire, L. L. C. and Oliveria, N. T. 2002. Randomly amplified polymorphic DNA of Trichoderma isolates and antagonism against Rhizoctonia solani. Braz. Arch. Biol. Technol. 45:151-160.   DOI
35 Hermosa, M. R., Grondona, I., Iturriaga, E. A., Diaz-Minguez, J. M., Castro, C., Monte, E. and Garcia-Acha, I. 2000. Molecular characterization and identification of biocontrol isolates of Trichoderma spp. Appl. Environ. Microbiol. 66:1890-1898.   DOI
36 Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research, 2nd edn. John Wiley, New York. 680pp.
37 Gromovykh, T. I., Litovka, Y. A., Gromovykh, V. S. and Makhova, E. G. 2002. Effect of strain Trichoderma asperellum (MG-97) towards fusarioses of Larix sibirica seedlings. Mik Fitopatol. 36:70-75.
38 Harman, G. E. 2000. Myths and dogmas of biocontrol, Changes in perceptions derived from research on Trichoderma harzianum T- 22. Plant Dis. 84:377-393.   DOI   ScienceOn
39 Howell, C. R. 2003. Mechanisms employed by Trichoderma species in the biological control of plant diseases, the history and evolution of current concepts. Plant Dis. 87:4-10.   DOI   ScienceOn
40 Jones, J. B., Jones, J. P., Stall, R. E. and Zitter, T. A. 1991. Compendium of tomato diseases. American Phytopathological Society, St. Paul, MN.
41 Kim, T. G. and Knudsen, G. R. 2013. Relationship between the biocontrol fungus Trichoderma harzianum and the phytopathogenic fungus Fusarium solani f.sp. pisi. Appl. Soil Ecol. 68:57-60.   DOI   ScienceOn
42 Kubicek, C. P., Mach, R. L., Peterbauer, C. K. and Lorito, M. 2001. Trichoderma: from genes to biocontrol. J. Plant Pathol. 83:11-23.
43 Kullnig, C., Mach, R. L., Lorito, M. and Kubicek, C. P. 2000. Enzyme diffusion from Trichoderma atroviride (T. harzianum P1) to Rhizoctonia solani is a prerequisite for triggering of Trichoderma ech42 gene expression before mycoparasitic contact. Appl. Environ. Microbiol. 66:2232-2234.   DOI
44 Lutz, M. P., Feichtinger, G., Defago, G. and Duffy, B. 2003. Mycotoxigenic Fusarium and deoxynivalenol production repress chitinase gene expression in the biocontrol agent Trichoderma atroviride P1. Appl. Environ. Microbiol. 69:3077-3084.   DOI
45 Larkin, R. P. and Fravel, D. R. 1998. Efficacy of various fungal and bacterial biocontrol organisms for control of Fusarium wilt of tomato. Plant Dis. 82:1022-1028.   DOI   ScienceOn
46 Leslie, J. F. Summerell, B. A. 2006. The Fusarium Laboratory Manual. Blackwell Publishing, Iowa, USA. 388pp.
47 Lopes, F. A. C., Stendorff, A. S., Geraldine, A. M., Brandao, R. S., Monteiro, V. N., Junior, M. L., Coelho, A. S. G., Ulhon, C. J. and Silva, R. N. 2012. Biochemical and metabolic profiles of Trichoderma strains isolated from common bean crops in the Brazilian Cerrado, and potential antagonism against Sclerotinia sclerotiorum. Fungal Biol. 116:815-824.   DOI   ScienceOn
48 Mantel, N. 1967. The detection of disease clustering and a generalized regression approach. Cancer. Res. 27:209-220.
49 Marcello, C. M., Steindorff, A. S., Silva, S. P., Silva, R. N., Bataus, L. A. M. and Ulhoa, C. J. 2010. Expression analysis of the exo-${\beta}$-1,3-glucanase from the mycoparasitic fungus Trichoderma asperellum. Microbiol. Res. 165:75-81.   DOI   ScienceOn
50 Markovich, N. A. and Kononova, G. L. 2003. Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases, a review. Appl. Biochem. Microbiol. 39:389-400.
51 Meyer, S. F. M. and Roberts, D. P. 2002. Combinations of biocontrol agents for management of plant-parasitic nematodes and soilborne plant pathogenic fungi. J. Nematol. 34:1-8.
52 Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31:426-428.   DOI
53 Morton, D. J. and Stroube, W. H. 1955. Antagonistic and stimulating effects of soil micro-organism of Sclerotium. Phytopathol. 45:417-420.
54 Molano, J., Duram, A. and Cabib, E. 1977. A rapid and sensitive assay for chitinase using tritiated chitin. Anal. Biochem. 83:648-656.   DOI   ScienceOn
55 Mondejar, R. L., Ros, M. and Pascual, J. A. 2011. Mycoparasitism-related genes expression of Trichoderma harzianum isolates to evaluate their efficacy as biological control agent. Biol. Control 56:59-66.   DOI   ScienceOn
56 Monte, E. 2001. Understanding Trichoderma, between biotechnology and microbial ecology. Int. Microbiol. 4:1-4.
57 Mukherjee, M., Mukherjee, P. K., Horwitz, B. A., Zachow, C., berg, G. and Zeilinger, S. 2012. Trichoderma-Plant-Pathogen Interactions: Advances in Genetics of Biological Control. Indian J. Microbiol. 52:522-529.   DOI   ScienceOn
58 Muthumeenakshi, S., Mills, P. R., Brown, A. E. and Seaby, D. A. 1994. Intraspecific molecular variation among Trichoderma harzianum isolates colonizing mushroom compost in the British Isles. Microbiology 140:769-777.   DOI
59 Qualhato, F. T., Lopes, F. A. C., Steindorff, A. S., Brandao, R. S., Jesuino, R. S. A. and Ulhoa, C. J. 2013. Mycoparasitism studies of Trichoderma species against three phytopathogenic fungi: evaluation of antagonism and hydrolytic enzyme production. Biotechnol. Lett. 35:1461-1468.   DOI   ScienceOn
60 Raeder, U. and Broda, P. 1985. Rapid preparation of DNA from filamentous fungi. Lett. Appl. Microbiol. 1:17-20.   DOI
61 Rolf, F. J. 1993. NTSYS-pc Numerical Taxonomy and Multivariate Analysis System, Version 1.8. Exeter Software, Setauket, New York, USA.