• Title/Summary/Keyword: Fungal Concentration

Search Result 329, Processing Time 0.025 seconds

Inhibitory Effects of Resveratrol and Piceid against Pathogens of Rice Plant, and Disease Resistance Assay of Transgenic Rice Plant Transformed with Stilbene Synthase Gene

  • Yu, Sang-Mi;Lee, Ha Kyung;Jeong, Ui-Seon;Baek, So Hyeon;Noh, Tae-Hwan;Kwon, Soon Jong;Lee, Yong Hoon
    • Research in Plant Disease
    • /
    • v.19 no.3
    • /
    • pp.177-182
    • /
    • 2013
  • Resvestrol has been known to inhibit bacterial and fungal growth in vitro, and can be accumulated in plant to concentrations necessary to inhibit microbial pathogens. Hence, stilbene synthase gene has been used to transform to synthesize resveratrol in heterologous plant species to enhance resistance against pathogens. In the present study, we investigated the antimicrobial activities of resveratrol and piceid to bacterial and fungal pathogens, which causing severe damages to rice plants. In addition, disease resistance was compared between transgenic rice varieties, Iksan 515 and Iksan 526 transformed with stlibene synthase gene and non-transgenic rice varieties, Dongjin and Nampyeong. Minimum inhibitory concentration of resveratrol for Burkolderia glumae was 437.5 ${\mu}M$, and the mycelial growth of Biplaris oryzae was slightly inhibited at concentration of 10 ${\mu}M$. However, other bacterial and fungal pathogens are not inhibited by resveratrol and piceid. The expression of the stilbene synthase gene in Iksan 515 and Iksan 526 did not significantly enhanced resistance against bacterial grain rot, bacterial leaf blight, sheath blight, and leaf blight. This study is the first report on the effect of resveratrol and piceid against pathogens of rice plant, and changes of disease resistance of transgenic rice plants transformed with stilbene synthase gene.

Alteration of Gas Exchange in Rice Leaves Infected with Magnaporthe grisea

  • Yun, Sung-Chul;Kim, Pan-Gi;Park, Eun-Woo
    • The Plant Pathology Journal
    • /
    • v.16 no.5
    • /
    • pp.257-263
    • /
    • 2000
  • Infection with rice blast fungus (Magnaporthe grisea) significantly reduced foliar net photosynthesis (A) of rice cultivars: Ilpoom, Hwasung, and Choochung in greenhouse experiments. By measuring the amount of diseased leaf area with a computer image analysis system, the relation between disease severity (DS) and net photosynthetic rate was curvilinearly correlated (r=0.679). Diseased leaves with 35% blast symptom can be predicted to have a 50% reduction of photosynthesis. The disease severity was linearly correlated (r=0.478) with total chlorophyll (chlorophyll a and chlorophyll b) per unit leaf area(TC). Light use efficiency was reduced by the fungal infection according to the light response curves. However, dark respiration (Rd) did not change after the fungal infection (p=0.526). Since the percent of reduction in photosynthesis greatly exceeded the percent of leaf area covered by blast lesions, loss of photosynthetic tissue on an area basis could not by itself account for the reduced photosynthesis. Quantitative photosynthetic reduction can be partially explained by decreasing TC, but cannot be explained by decreasing Rd. By photosynthesis (A)-internal CO$_2$ concentration (C$_i$ curve analysis, it was suggested that the fungal infection reduced ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity, ribulose-1,5-bisphosphate (RuBP) regeneration, and inorganic phosphate regeneration. Thus, the reduction of photosynthesis by blast infection was associated with decreased TC and biochemical capacity, which comprises all carbon metabolism after CO$_2$ enters through the stomata.

  • PDF

Development of Microbial Bioassay for Detection of Pesticide Residues (미생물을 이용한 농약잔류 분석법 개발)

  • 백수봉;양창술;오연선
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.297-304
    • /
    • 1994
  • This study was carried out to develop bioassay for detection of pesticide residues in agricultural products by using the soil microbial isolates sensitive to pesticides. One hundred bacterial isolates and eighty five fungal isolates were obtained from soil and their sensitivity to 10 ppm of several pesticides was examined in vitro. Five bacterial isolates and three fungal isolates were found sensitive to organochloride fungicide and two fungal isolates sensitive to organocopper fungicide. Among these isolates, B46, B93 and F67 were tested to find out the difference in sensitivity according to the methods of fungicide treatment. All of the isolates were found sensitive to 10 ppm of organochloride fungicides mixed directly in PDA. But they were found insensitive to the fungicide mixed in PDA after filtering through membrane filter. In case of organocopper fungicide, the isolates were found sensitive only when it was treated in PDA. And their sensitivity showed difference among various kinds of organochloride fungicides. B46 and B93 were employed to check the possibility as the agent for detection of the pesticidal residues in twenty eight agricultural products including rice. It was found that all samples had not residues because the samples did not inhibit the growth of isolates. When organochloride fungicides were applied to the above products, it was possible to detect the residues in fruits and vegetables at the concentration of 10 ppm, but not in starch-rich grains. B46 and B93 were identified as Bacillus sp. according to their bacterial characteristics in culture.

  • PDF

Production of Gluconic Acid by Some Local Fungi

  • Shindia, A.A.;El-Sherbeny, G.A.;El-Esawy, A.E.;Sheriff, Y.M.M.M.
    • Mycobiology
    • /
    • v.34 no.1
    • /
    • pp.22-29
    • /
    • 2006
  • Forty-one fungal species belonging to 15 fungal genera isolated from Egyptian soil and sugar cane waste samples were tested for their capacity of producing acidity and gluconic acid. For the tests, the fungi were grown on glucose substrate and culture filtrates were examined using paper chromatography analysis. Most of the tested fungi have a relative wide potentiality for total acid production in their filtrates. Nearly 51% of them showed their ability of producing gluconic acid. Aspergillus niger was distinguishable from other species by its capacity to produce substantial amounts of gluconic acid when it was cultivated on a selective medium. The optimized cultural conditions for gluconic acid yields were using submerged culture at $30^{\circ}C$ at initial pH 6.0 for 7 days of incubation. Among the various concentrations of substrate used, glucose (14%, w/v) was found to be the most suitable carbon source for maximal gluconic acid during fermentation. Maximum values of fungal biomass (10.02 g/l) and gluconic acid (58.46 g/l) were obtained when the fungus was grown with 1% peptone as sole nitrogen source. Influence of the concentration of some inorganic salts as well as the rate of aeration on the gluconic acid and biomass production is also described.

Intraspecific Functional Variation of Arbuscular Mycorrhizal Fungi Originated from Single Population on Plant Growth

  • Lee, Eun-Hwa;Ka, Kang-Hyeon;Eom, Ahn-Heum
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.48-48
    • /
    • 2014
  • Arbuscular Mycorrhizal Fungi(AMF) is widespread symbiont forming mutualistic relationship with plant root in terrestrial forest in ecosystem. They provide improved absorption of nutrient and water, and enhance the resistance against plant pathogen or polluted soil, therefore AM fungi are important for survival and maintaining of individual or community of plant. For last decade, many studies about the functional variation of AM fungi on host plant growth response were showed that different geographic isolates, even same species, have different effect on host plant. However, little was known about functional variation of AM fungal isolates originated single population, which provide important insight about intraspecific diversity of AMF and their role in forest ecosystem. In this study, four AM fungal isolates of Rhizophagus clarus were cultured in vitro using transformed carrot (Daucus carota) root and they showed the difference between isolates in ontogenic characteristics such as spore density and hyphal length. The plant growth response by mycorrhizas were measured also. After 20 weeks from inoculation of these isolates to host plants, dry weight, Root:Shoot ratio, colonization rates and N, P concentration of host plant showed host plant was affected differently by AM fungal isolates. This results suggest that AM fungi have high diversity in their functionality in intraspecific level, even in same population.

  • PDF

Repeated-batch Culture of Immobilized Gibberella fujikuroi B9 for Gibberellic Acid Production: An Optimization Study

  • Kim, Chang-Joon;Lee, Sang-Jong;Chang, Yong-Keun;Chun, Gie-Taek;Jeong, Yeon-Ho;Kim, Sung-Bae
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.544-549
    • /
    • 2006
  • The performance of immobilized fungal cells on celite beads for the production of gibberrelic acid was investigated in flasks and 7-L stirred-tank reactor. Repeated incubations of immobilized fungal cells increased cell concentrations and volumetric productivity. The maximum volumetric productivity obtained in the immobilized-cell culture was 3-fold greater than that in suspended-cell culture. The concentration of cotton seed flour (CSF), among the various nutrients supplied, most significantly influenced productivity and operational stability. Notably, insoluble components in CSF were found to be essential for production. CSF at 6 g/L with 60 g/L glucose was found to be optimal for gibberellic acid production and stable operation by preventing excessive cell growth.

Community Structure of Ectomycorrhizal Fungal communities Colonizing Quercus spp. in Limestone Areas of Korea (석회암 지대 참나무속 식물에 공생하는 외생균근균의 군집구조)

  • Lee, Jong-Chul;Park, Hyeok;Eom, Ahn-Heum
    • The Korean Journal of Mycology
    • /
    • v.49 no.1
    • /
    • pp.109-118
    • /
    • 2021
  • In this study, we analyzed the diversity of ectomycorrhizal (ECM) fungal communities of Quercus spp. roots in the limestone area. We identified 45 generd of ECM using next generation sequencing (NGS) analysis. Soil chemical composition analysis confirmed soil pH, substitution calcium concentration, total nitrogen content, organic phosphate, and organic matter content. Shannon's Index was calculated according to the changes in soil chemical composition. The results of cluster analysis showed that Sebacina, Tomentella, Tuber, Densospora, Inocybe, Suillus, and Piloderma were the main genera of symbiotic ECM fungi that thrived in soil with high pH and calcium content.

Rhizobacteria-mediated Induced Systemic Resistance in Cucumber Plants against Anthracnose Disease Caused by Colletotrichum orbiculare

  • Jeun, Yong-Chull;Lee, Yun-Jeong;Bae, Yeoung-Seuk
    • The Plant Pathology Journal
    • /
    • v.20 no.3
    • /
    • pp.172-176
    • /
    • 2004
  • Bacterial isolates TRL2-3 and TRK2-2 showing anti-fungal activity in vitro test against some plant pathogens were identified as Pseudomonas putida and Micrococcus luteus, respectively. Pre-treatment with both bacterial isolates at the concentration 1.0$\times$ $10^7$ and $10^6$cfu/ml in the rhizosphere could trigger induced systemic resistance in the aerial part of cucumber plants against anthracnose caused by Colletotrichum orbiculare. However, the pre-treatment with the higher concentration at 1.0 $\times$ $10^8$ cfu/ml of both isolates could not induce resistance after challenge inoculation with C. orbiculare. As a positive control, the treatment with DL-3 amino butyric acid caused a remarkable reduction of disease severity whereas the lesions on the leaves of untreated plants developed apparently after the fungal inoculation. From these results, it was recomended that disease control using both bacterial isolates inducing systemic resistance in the field where chemical application is forbid.

Inhibitory Effects of Super Reductive Water on Plant Pathogenic Fungi

  • Hur, Jae-Seoun;Kim, Hae-Jin;Oh, Soon-Ok;Koh, Young-Jin;Kwak, Young-Se;Lee, Choong-Il
    • The Plant Pathology Journal
    • /
    • v.18 no.5
    • /
    • pp.284-287
    • /
    • 2002
  • The antifungal activity of super reductive water (SRW) against plant pathogenic fungi was examined to extend its application to integrated pest management (IPM) for plant diseases. Diluted solutions ($\times$1/10, $\times$1/25, and $\times$1/50) of SRW inhibited fungal growth of kiwifruit soft rot pathogen, Diaporthe actinidiae, in a concentration dependent manner, When kiwifruits were inoculated on wounds with mycelium blocks, stock and diluted solutions successfully inhibited the disease development. In addition to the high pH of the SRW, fungistatic activity was also considered as the cause of the antifungal effect against the pathogen. Whereas conidial germination of Magnaporthe grisea was not affected by the diluted SRW solutions, appressorium formation was significantly inhibited in a concentration dependent manner, With little harmfulness to human health and environment SRW could be used to control plant pathogenic fungi, particularly appressorium-forming fungal pathogens.

Antimelanogenesis Effects of Fungal Exopolysaccharides Prepared from Submerged Culture of Fomitopsis castanea Mycelia

  • Jin, Juhui;Nguyen, Thi Thanh Hanh;Kim, Changmu;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1204-1211
    • /
    • 2019
  • Fungal exopolysaccharides are important natural products having diverse biological functions. In this study, exopolysaccharides from Fomitopsis castanea mycelia (FEPS) were prepared, and the highest mushroom tyrosinase inhibitory activity was found. FEPS were prepared from cultivation broth by ethanol precipitation method. The extraction yield and protein concentration of FEPS were 213.1 mg/l and 0.03%, respectively. FEPS inhibited mushroom tyrosinase with the half maximal inhibitory concentration ($IC_{50}$) of 16.5 mg/ml and dose-dependently inhibited cellular tyrosinase activity (63.9% at $50{\mu}g/ml$, and 83.3% at $100{\mu}g/ml$) in the cell-free extract of SK-MEL-5 human melanoma cell and ${\alpha}$-melanocyte-stimulating hormone (${\alpha}-MSH$)-stimulated melanin formation in intact SK-MEL-5 human melanoma cell. The $IC_{50}$ of FEPS against NO production from RAW264.7 macrophage cells was $42.8{\pm}0.64{\mu}g/ml$. By in vivo study using a zebrafish model, exposure of FEPS at $400{\mu}g/ml$ to dechorionated zebrafish embryos for 18 h decreased the pigment density, compared to that without FEPS-treated control.