• 제목/요약/키워드: Fundamental Field

검색결과 1,324건 처리시간 0.026초

효율적인 수체의 기본단수계 생성 알고리즘과 H/W 구현에 관한 연구 (On Efficient Algorithms for Generating Fundamental Units and their H/W Implementations over Number Fields)

  • 김용태
    • 한국전자통신학회논문지
    • /
    • 제12권6호
    • /
    • pp.1181-1188
    • /
    • 2017
  • 수체의 단수와 기본단수계는 RSA 암호계에서는 400자리 이상의 큰 수가 소수인지를 판별하는 소수판정법과 그 수를 소인수분해하는 데에 사용되는 다양한 수체선별법에 사용되며, 복소이차체를 기반으로 하는 암호계에서는 이데알의 곱셈과정과 류수(class number)를 계산하는 과정 등 다양한 암호계에서 사용되고 있다. 본 논문에서는 기본단수계를 이용하는 암호계의 구현시간과 공간을 줄이기 위하여, 수체의 기본단수계의 존재성을 증명한 Dirichlet의 정리와 몇 가지 기본단수계의 성질을 중심으로 우리가 제안하는 기본단수계의 생성 과정을 소개한다. 그리고 그에 따른 기본단수계의 H/W 구현의 시간과 공간을 최소화할 수 있는 효율적인 기본단수계의 생성알고리즘과 그 알고리즘을 H/W 상에서 구현한 결과를 제시한다.

공간고주파자속을 가진 콘덴서 전동기의 특성해석에 관한 연구 (The Study On Analysis Of The Characteristics For Capacitor Motor Having Space Harmonics In Its Magnetic Field)

  • 오경열
    • 전기의세계
    • /
    • 제24권1호
    • /
    • pp.29-42
    • /
    • 1975
  • In this paper, the electrical angle between two winding axes in the stator of the capacitor motor is put optional angle, deviding the space harmonics in its magnetic field of two windings and the leakage flux into the forward revolving field and the backward one by the revolving-field theory, its equivalent circuit which consider mutual induction between two windings is depicted. In the depicted equivalent circuit, the rotor resistance for the fundamental flux is devided into the resistance for the rotor bar and endring, and the rotor leakage reactance for the fundamental is devided into the skew leadage reactance and the other, and each circuit constants for each harmonics is expressed in terms of the circuit constants for the fundamental, so it mades easy to determine the characteristics for the capacitor motor. As the circuit constant ratios to the magnetizing reactance of the fundamental are used, motors which have same circuit constant ratios should be resembled in their characteristics.

  • PDF

음장 제어의 이론과 그 적용 (Sound manipulation: Theory and Applications)

  • 김양한
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.468-471
    • /
    • 2008
  • Sound manipulation is to control sound field using multiple sound sources for appropriate purposes. In linear acoustics, a sound can be constructed by superimposing several fundamental sound fields such as a planewave and sphere shape sound field. That is how we manipulate sound field. In this paper, we introduce the theory of sound manipulation and its applications from the examples of the generation of fundamental sound field: a circle, a ring shape sound field and a planewave field.

  • PDF

3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties

  • Moazam, Adel Mahmoudi;Hasani, Nemat;Yazdani, Mahdi
    • Advances in Computational Design
    • /
    • 제2권4호
    • /
    • pp.257-271
    • /
    • 2017
  • There are many plain concrete arch bridges in Iran that have been used as railway bridges for more than seventy years. Owe to the fact that these bridges have not been designed seismically, and even may be loaded under high-speed trains, evaluation of fundamental frequencies of the bridges against earthquake and high-speed train vibrations is necessary for considering dynamics effects. To evaluate complex behavior of these bridges, results of field tests are useful. Since it is not possible to perform field tests for all arch bridges, these structures should be simulated correctly by computers for structural assessment. Several parameters are employed to describe the bridges, such as number of spans, length of spans, geometrical and material properties. In this study, results of field tests are used for modal analysis and adapted for 64 three dimensional finite element models with various physical parameters. Computer simulations show length of spans has important effect on fundamental frequencies of plain concrete arch bridge and modal deformations of bridges is in longitudinal and transverse directions. Also, these results demonstrate that fundamental frequencies of bridges decrease after increasing span length and number of spans. Plus, some relations based in the number of spans (n) and span length (l) are proposed for calculation of fundamental frequencies of plain concrete arch bridge.

NEW BOUNDS FOR FUNDAMENTAL UNITS AND CLASS NUMBERS OF REAL QUADRATIC FIELDS

  • Isikay, Sevcan;Pekin, Ayten
    • 대한수학회보
    • /
    • 제58권5호
    • /
    • pp.1149-1161
    • /
    • 2021
  • In this paper, we present new bounds on the fundamental units of real quadratic fields ${\mathbb{Q}}({\sqrt{d}})$ using the continued fraction expansion of the integral basis element of the field. Furthermore, we apply these bounds to Dirichlet's class number formula. Consequently, we provide computational advantages to estimate the class numbers of such fields. We also give some numerical examples.

Application of POD reduced-order algorithm on data-driven modeling of rod bundle

  • Kang, Huilun;Tian, Zhaofei;Chen, Guangliang;Li, Lei;Wang, Tianyu
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.36-48
    • /
    • 2022
  • As a valid numerical method to obtain a high-resolution result of a flow field, computational fluid dynamics (CFD) have been widely used to study coolant flow and heat transfer characteristics in fuel rod bundles. However, the time-consuming, iterative calculation of Navier-Stokes equations makes CFD unsuitable for the scenarios that require efficient simulation such as sensitivity analysis and uncertainty quantification. To solve this problem, a reduced-order model (ROM) based on proper orthogonal decomposition (POD) and machine learning (ML) is proposed to simulate the flow field efficiently. Firstly, a validated CFD model to output the flow field data set of the rod bundle is established. Secondly, based on the POD method, the modes and corresponding coefficients of the flow field were extracted. Then, an deep feed-forward neural network, due to its efficiency in approximating arbitrary functions and its ability to handle high-dimensional and strong nonlinear problems, is selected to build a model that maps the non-linear relationship between the mode coefficients and the boundary conditions. A trained surrogate model for modes coefficients prediction is obtained after a certain number of training iterations. Finally, the flow field is reconstructed by combining the product of the POD basis and coefficients. Based on the test dataset, an evaluation of the ROM is carried out. The evaluation results show that the proposed POD-ROM accurately describe the flow status of the fluid field in rod bundles with high resolution in only a few milliseconds.

FUNDAMENTAL UNITS AND REGULATORS OF AN INFINITE FAMILY OF CYCLIC QUARTIC FUNCTION FIELDS

  • Lee, Jungyun;Lee, Yoonjin
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.417-426
    • /
    • 2017
  • We explicitly determine fundamental units and regulators of an infinite family of cyclic quartic function fields $L_h$ of unit rank 3 with a parameter h in a polynomial ring $\mathbb{F}_q[t]$, where $\mathbb{F}_q$ is the finite field of order q with characteristic not equal to 2. This result resolves the second part of Lehmer's project for the function field case.

동적기본해의 역FFT에 의한 비선형 지반-말뚝-구조계의 시간영역 지진응답 해석 (Time Domain Seismic Response Analysis of Nonlinear Soil-Pile-Structure Interaction System using Inverse FFT of Dynamic Fundamental Solution)

  • 김문겸;임윤묵;조석호;박종헌;정대희
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.125-132
    • /
    • 2002
  • In this study, a numerical method is developed for nonlinear analysis for soil-pile-structure interaction system in time domain. Finite elements considering material nonlinearity are used for the near field and boundary elements for the far field. In the near field, frame elements are used for modeling a pile and plane-strain elements for surrounding soil and superstructure. In. the far field, boundary element formulation using the dynamic fundamental solution is adopted and coupled with the near field. Transformation of stiffness matrices of boundary elements into time domain is performed by inverse FFT. Stiffness matrices in the near field and far field are coupled. Newmark direct time integration method is applied. Developed soil-pile-structure interaction analysis method is verified with available literature and commercial code. Also, parametric studies by developed numerical method are performed. And seismic response analysis is performed using actual earthquake records.

  • PDF

SRR과 단순한 루프안테나를 유도 결합시킨 자기장 검출기 (Magnetic field detector using inductively coupled SRR and simple loop antenna)

  • 이왕주;주정호;김동호;최재익
    • 대한전자공학회논문지TC
    • /
    • 제45권8호
    • /
    • pp.28-34
    • /
    • 2008
  • MRI(magnetic resonance imaging)의 신호검출기로 활용 가능한 간단한 형태의 자기장 검출기를 제안하였다. 제안된 검출기는 SRR(split ring resonator)이라고 하는 음의 투자율을 구현하는데 최초 사용되었던 일종의 LC 공진회로와 간단한 루프안테나를 유도성 결합시킨 것으로 기존의 MRI 신호검출기에 비해 단순한 구성으로 유사한 감도를 가질 수 있음을 확인하였다.

유한요소-경계요소 조합에 의한 지반-말뚝 상호작용계의 주파수 응답해석

  • 김민규;조석호;임윤목;김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.443-450
    • /
    • 2000
  • In this study a numerical method for soil-pile interaction analysis buried in multi-layered half planes is presented in frequency domain using FE-BE coupling. The total soil-pile interaction system is divided into two parts so called far field and near field beam elements are used for modeling a pile and coupled with plain strain elements for soil modeling. Boundary element formulation using the multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered dynamic fundamental solution is adopted to the far field and coupled with near field modeled by finite elements. In order to verify the proposed soil-pile interaction analysis method the dynamic responses of a pile on multi-layered half-planes are performed and compared with experiment results. Through this developed method the dynamic response analysis of a pile buried in multi-layered half planes can be calculated effectively in frequency domain.

  • PDF