• 제목/요약/키워드: Functionally Graded nonhomogeneous Interfacial Zone

검색결과 5건 처리시간 0.016초

비균질 구배기능 계면영역을 고려한 적층 만무한체의 동일선상 복수균열 해석 (The Problem of Collinear Cracks in a Layered Half-Plane with a Functionally Graded Nonhomogeneous Interfacial Zone)

  • 진태은;최형집;이강용
    • 대한기계학회논문집A
    • /
    • 제20권4호
    • /
    • pp.1275-1289
    • /
    • 1996
  • The plane elasticity problem of collinear cracks in a layered medium is investigated. The medium is modeled as bonded structure constituted from a surface layer and a semi-infinite substrate. Along the bond line between the two dissimilar homegeneous constituents, it is assumed that as interfacial zone having the functionally graded, nonhomogeneous elastic modulus exists. The layered medium contains three collinear cracks, one in each constituent material oriented perpendicular to the nominal interfaces. The stiffness matrix formulation is utilized and a set of homogeneous conditions relevant to the given problem is readily satisfied. The proposed mixed boundary value problem is then represented in the form of a system of integral equations with Cauchy-type singular kernels. The stress intensity factors are defined from the crack-tip stress fields possessing the standard square-root singular behavior. The resulting values of stress intensity factors mainly address the interactions among the cracks for various crack sizes and material combinations.

Anti-Plane Shear Behavior of an Arbitrarily Oriented Crack in Bonded Materials with a Nonhomogeneous Interfacial Zone

  • Chung, Yong-Moon;Kim, Chul;Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제17권2호
    • /
    • pp.269-279
    • /
    • 2003
  • The anti-plane shear problem of bonded elastic materials containing a crack at an arbitrary angle to the graded interfacial zone is investigated in this paper The interfacial zone is modeled as a nonhomogeneous interlayer of finite thickness with the continuously varying shear modulus between the two dissimilar, homogeneous half-planes. Formulation of the crack problem is based upon the use of the Fourier integral transform method and the coordinate transformations of basic field variables. The resulting Cauchy-type singular integral equation is solved numerically to provide the values of mode 111 stress intensity factors. A comprehensive parametric study is then presented of the influence of crack obliquity on the stress intensity factors for different crack size and locations and for different material combinations, in conjunction with the material nonhomogeneity within the graded interfacial zone.

Mode I and Mode II Analyses of a Crack Normal to the Graded Interlayer in Bonded Materials

  • Park, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제15권10호
    • /
    • pp.1386-1397
    • /
    • 2001
  • In this paper, the plane elasticity equations are used to investigate the in-plane normal (mode I) and shear (mode II) behavior of a crack perpendicular to and terminating at the interface in bonded media with a graded interfacial zone. The interfacial Bone is treated as a nonhomogeneous interlayer with the continuously varying elastic modulus between the two dissimilar, homogeneous semi-infinite constituents. For each of the individual loading modes, based on the Fourier integral transform technique, a singular integral equation with a Cauchy kernel is derived in a separate but parallel manner. In the numerical results, the values of corresponding modes of stress intensity factors are illustrated for various combinations of material and geometric parameters of the bonded media in conjunction with the effect of the material nonhomogeneity within the graded interfacial zone.

  • PDF

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • 제18권8호
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.

열충격하 적층체의 열탄성 구배기능 계면영역을 고려한 동일선상 복수균열 해석 (Collinear cracks in a layered structure with a thermoelastically graded interfacial zone under thermal shock)

  • 최형집;진태은;이강용
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.779-789
    • /
    • 1998
  • In this paper, the thermal shock responses of collinear cracks in a layered medium are investigated based on the uncoupled, quasi-static plane thermoelasticity. The medium is modeled as a bonded structure composed of a surface layer and a semi-infinite substrate. Between these two dissimilar homogeneous constituents, a functionally graded interfacial zone exists with the nonhomogeneous features of continuously varying thermoelastic properties. Three cracks are assumed to be present in the layered medium, one in each one of the constituent materials, aligned collinearly normal to the nominal interfaces. A system of singular integral equations is solved, subjected to the forcing terms of equivalent transient thermal tractions acting on the locations of cracks via superposition. Main results presented are the transient thermal stress intensity factors to illustrate the parametric effects of various geometric and amterial combinations of the medium with the thermoelastically graded interfacial zone and the collinear cracks.