• Title/Summary/Keyword: Functionality evaluation

Search Result 520, Processing Time 0.026 seconds

Vulnerability assessment of strategic buildings based on ambient vibrations measurements

  • Mori, Federico;Spina, Daniele
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.2
    • /
    • pp.115-132
    • /
    • 2015
  • This paper presents a new method for seismic vulnerability assessment of buildings with reference to their operational limit state. The importance of this kind of evaluation arises from the civil protection necessity that some buildings, considered strategic for seismic emergency management, should retain their functionality also after a destructive earthquake. The method is based on the identification of experimental modal parameters from ambient vibrations measurements. The knowledge of the experimental modes allows to perform a linear spectral analysis computing the maximum structural drifts of the building caused by an assigned earthquake. Operational condition is then evaluated by comparing the maximum building drifts with the reference value assigned by the Italian Technical Code for the operational limit state. The uncertainty about the actual building seismic frequencies, typically significantly lower than the ambient ones, is explicitly taken into account through a probabilistic approach that allows to define for the building the Operational Index together with the Operational Probability Curve. The method is validated with experimental seismic data from a permanently monitored public building: by comparing the probabilistic prediction and the building experimental drifts, resulting from three weak earthquakes, the reliability of the method is confirmed. Finally an application of the method to a strategic building in Italy is presented: all the procedure, from ambient vibrations measurement, to seismic input definition, up to the computation of the Operational Probability Curve is illustrated.

A QoS-aware Web Services Selection for Reliable Web Service Composition

  • Nasridinov, Aziz;Byun, Jeongyong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2012.04a
    • /
    • pp.586-589
    • /
    • 2012
  • Web Services have been utilized in a wide variety of applications and have turned into a key technology in developing business operations on the Web. Originally, Web Services can be exploited in an isolated form, however when no single Web Service can satisfy the functionality required by a user, there should be a possibility to compose existing services together in order to fulfill the user requirement. However, since the same service may be offered by different providers with different non-functional Quality of Service (QoS), the task of service selection for Web Service composition is becoming complicated. Also, as Web Services are inherently unreliable, how to deliver reliable Web Services composition over unreliable Web Services should be considered while composing Web Services. In this paper, we propose an approach on a QoS-aware Web Service selection for reliable Web Service composition. In our approach, we select and classify Web Services using Decision Tree based on QoS attributes provided by the client. Service classifier will improve selection of relevant Web Services early in the composition process and also provide flexibility to replace a failed Web Services with a redundant alternative Web Services, resulting in high availability and reliability of Web Service composition. We will provide an implementation of our proposed approach along with efficiency measurements through performance evaluation.

Development of Sustainable Accessory Design Using Convertible Techniques

  • Tang, Wujun;Koo, Sumin
    • Journal of Fashion Business
    • /
    • v.25 no.6
    • /
    • pp.46-69
    • /
    • 2021
  • This research aimed to analyze the features of convertible accessories, develop sustainable accessory designs using convertible techniques, and evaluate the designs developed through a consumer satisfaction survey and in anticipation of commercialization. Through a review of literature and design cases, convertible accessories were classified; and six convertible accessory designs were developed into practical products. A survey on the convertible designs was conducted to evaluate their aesthetic, functional, and symbolic aspects, ease of use, usefulness, and the intention of consumers to purchase and use the products. In addition, a survey was performed to understand the differences in fashion leadership and eco commitment and behavior. The data were analyzed using descriptive analysis methods, a series of t-test, and ANOVA using the SPSS 25.0 software. There were 335 participants; mostly adult women aged between 20 and 60 years and living in China, one of the world's largest accessory markets. The participants showed high interest to use and purchase the developed designs. There were significant differences in aesthetics, functionality, symbolism, attitude, ease of use, usefulness, usage, and purchase intention for the developed convertible accessories among people with different levels of fashion leadership, environmental commitment, and behavior. The results of this study will help designers develop convertible accessories with a better understanding of consumer perceptions and attitudes towards convertible accessories.

A weighted method for evaluating software quality (가중치를 적용한 소프트웨어 품질 평가 방법)

  • Jung, Hye Jung
    • Journal of Digital Convergence
    • /
    • v.19 no.8
    • /
    • pp.249-255
    • /
    • 2021
  • This study proposed a method for determining weights for the eight quality characteristics, such as functionality, reliability, usability, maintainability, portability, efficiency, security, and interoperability, which are suggested by international standards, focusing on software test reports. Currently, the test results for software quality evaluation apply the same weight to 8 quality characteristics to obtain the arithmetic average. Weights for 8 quality characteristics were applied using the results from text analysis, and weights were applied using the results of text analysis of test reports for two products. It was confirmed that the average of test reports according to the weighted quality characteristics was more efficient.

Fabrication and evaluation of hydrophobic metal stent using electron beam equipment (전자빔 처리를 통한 발수성 금속 스텐트 제작 및 평가)

  • Kim, Jisoo;Park, Jongsung
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.165-169
    • /
    • 2021
  • The objective of this study was to fabricate a novel hydrophobic stent for reducing restenosis by employing electron beam equipment. The stent was fabricated from a CoCr alloy tube by using a femtosecond laser and was treated with argon plasma. Subsequently, the stent's surface specification changed from hydrophilic to hydrophobic. Application of the electron beam offers several advantages such as a short processing time, whole surface reforming, and enhancement of material properties. As the surface of the stent was rendered hydrophobic, it can provide equivalent or enhanced mechanical properties and greater functionality with a higher radial force at the extended stent in a blood vessel. The obtained results corresponding to the mechanical properties indicate that the contact angle increased to approximately 130°, and the radial force increased to approximately 3 N. Furthermore, cell culture experiments were conducted for verifying whether cells were cultured on the surface-modified CoCr surface. Based on the obtained results, it is believed that an effective reduction in the restenosis of inserted vascular stents is possible.

Evaluation of the Effects of Carbon Dioxide on the Production of Engineered Biochar (기능성 바이오차 생산을 위한 이산화탄소의 영향 평가)

  • Lee, Sangyoon;Lee, Taewoo;Kwon, E. Eilhann
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.2
    • /
    • pp.41-49
    • /
    • 2022
  • To abate the environmental burdens arising from CO2 emissions, biochar offers a strategic means to sequester carbons due to its recalcitrant nature. Also, biochar has a great potential for the use as carbon-based adsorbent because it is a porous material. As such, developing the surface properties of biochar increases a chance to produce biochar with great adsorption performance. Given that biochar is a byproduct in biomass pyrolysis, characteristics of biochar are contingent on pyrolysis operating parameters. In this respect, this work focused on the investigation of surface properties of biochar by controlling temperature and reaction medium in pyrolysis of pine sawdust as case study. In particular, CO2 was used as reaction medium in pyrolysis process. According to pyrolytic temperature, the surface properties of biochar were indeed developed by CO2. The biochar engineered by CO2 showed the improved capability on CO2 sorption. In addition, CO2 has an effect on energy recovery by enhancing syngas production. Thus, this study offers the functionality of CO2 for converting biomass into engineered biochar as carbon-based adsorbent for CO2 sorption while recovering energy as syngas.

Experimental testing and evaluation of coating on cables in container fire test facility

  • Aurtherson, P. Babu;Hemanandh, J.;Devarajan, Yuvarajan;Mishra, Ruby;Abraham, Biju Cherian
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1652-1656
    • /
    • 2022
  • Fire tests were conducted on cables using fire-retardant paint employed in nuclear power plants that transmit electrical power, control and instrument signals. The failure criteria of various power and control cables coated with fire retardant coating at three different coating thicknesses (~0.5 mm, 1.0 mm & 1.5 mm) were studied under direct flame test using Container Fire Test Facility (CFTF) based on standard tests for bare cables. A direct flame fire test was conducted for 10 min with an LPG ribbon burner rated at ten by fixing the cable samples in a vertical cable track. Inner sheath temperature was measured until ambient conditions were achieved by natural convection. The cables are visually evaluated for damage and the mass loss percentage. Cable functionality is ascertained by checking for electrical continuity for each sample. The thickness of cable coating on fire exposure is also studied by comparing the transient variation of inner sheath temperature along the Cable length. This study also evaluated the adequacy of fire-retardant coating on cables used for safety-critical equipment in nuclear power plants.

Comparison of machine learning algorithms to evaluate strength of concrete with marble powder

  • Sharma, Nitisha;Upadhya, Ankita;Thakur, Mohindra S.;Sihag, Parveen
    • Advances in materials Research
    • /
    • v.11 no.1
    • /
    • pp.75-90
    • /
    • 2022
  • In this paper, functionality of soft computing algorithms such as Group method of data handling (GMDH), Random forest (RF), Random tree (RT), Linear regression (LR), M5P, and artificial neural network (ANN) have been looked out to predict the compressive strength of concrete mixed with marble powder. Assessment of result suggests that, the overall performance of ANN based model gives preferable results over the different applied algorithms for the estimate of compressive strength of concrete. The results of coefficient of correlation were maximum in ANN model (0.9139) accompanied through RT with coefficient of correlation (CC) value 0.8241 and minimum root mean square error (RMSE) value of ANN (4.5611) followed by RT with RMSE (5.4246). Similarly, other evaluating parameters like, Willmott's index and Nash-sutcliffe coefficient value of ANN was 0.9458 and 0.7502 followed by RT model (0.8763 and 0.6628). The end result showed that, for both subsets i.e., training and testing subset, ANN has the potential to estimate the compressive strength of concrete. Also, the results of sensitivity suggest that the water-cement ratio has a massive impact in estimating the compressive strength of concrete with marble powder with ANN based model in evaluation with the different parameters for this data set.

Modeling and Analysis of IGLAD Traffic Accident Case using Prescan for SOTIF Standard Development (SOTIF 표준 개발을 위한 Prescan 기반 IGLAD 교통사고 케이스 모델링 및 분석)

  • Sangjoong Kim;Dongha Shim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.15 no.3
    • /
    • pp.53-58
    • /
    • 2023
  • Defects in the vehicle itself were considered the biggest risk factor for traffic accidents as the electrical and electronic components of vehicles, which were not there before, increase. Therefore, the vehicles have been developed based on ISO 26262 (an international functional safety standard) which is focusing on functional defect safety evaluation of electrical and electronic component systems. However, in the future, as autonomous driving technology is applied, even vehicles without functional defects must be prepared for the dangerous traffic situation that may arise from exceptional or external factors. SOTIF (Safety Of The Intended Functionality) is a concept to prevent exceptional or external factors. The main objective of SOTIF is to decrease Unknown & Unsafe factors as much as possible by finding Known factors and Unsafe factors. In this study, Prescan provided SIEMENS, one of the autonomous driving simulators, is used to make scenarios of IGLAD traffic accident cases. From the simulation results, Unsafe & Safe cases were classified and analyzed to derive unsafe factors.

Properties of Water-based Paint mixed with Photocatalyst for Indoor Air Quality Improvement (실내 공기질 개선을 위한 광촉매를 혼입한 수성도료의 특성)

  • Choi, Byung-Cheol;Park, Chae-Wool;Kyoung, In-Su;Lee, Sang-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.29-30
    • /
    • 2020
  • As the modern society enters, the building becomes sealed and the public's interest in the environment increases, so the interest in indoor air pollution increases and the environmental pollution is raised as an important issue not only outdoors but also indoors. In addition, the emergence of sick house syndrome (SHS) has increased the interest in formaldehyde and is a cause of deteriorating indoor air quality. Accordingly, this study prepared a functional paint by incorporating a photocatalyst in an aqueous paint, and conducted formaldehyde adsorption experiments and functional evaluation. As a result of the experiment, as the photocatalyst was added, the formaldehyde adsorption performance tended to increase. In addition, as a result of measuring the impact resistance and alkali resistance according to the KS standard, there is no difference in residual cracks and cracks between the water-based paint without the photocatalyst and the water-based paint with the photocatalyst added. Therefore, it is considered that the water-based paint added with a photocatalyst can improve the indoor air quality by adsorbing formaldehyde and can be used as a functional paint because the functionality is not different from that of a general water-based paint.

  • PDF