
A QoS-aware Web Services Selection for Reliable Web Service
Composition

Aziz Nasridinov, Byun Jeongyong
Department of Computer Engineering, Dongguk University

aziz_nasridinov@yahoo.com, byunjy@dongguk.ac.kr

Abstract

Web Services have been utilized in a wide variety of applications and have turned into a key technology in
developing business operations on the Web. Originally, Web Services can be exploited in an isolated form,
however when no single Web Service can satisfy the functionality required by a user, there should be a possibility
to compose existing services together in order to fulfill the user requirement. However, since the same service may
be offered by different providers with different non-functional Quality of Service (QoS), the task of service
selection for Web Service composition is becoming complicated. Also, as Web Services are inherently unreliable,
how to deliver reliable Web Services composition over unreliable Web Services should be considered while
composing Web Services. In this paper, we propose an approach on a QoS-aware Web Service selection for
reliable Web Service composition. In our approach, we select and classify Web Services using Decision Tree based
on QoS attributes provided by the client. Service classifier will improve selection of relevant Web Services early
in the composition process and also provide flexibility to replace a failed Web Services with a redundant
alternative Web Services, resulting in high availability and reliability of Web Service composition. We will provide
an implementation of our proposed approach along with efficiency measurements through performance evaluation.

1. INTRODUCTION

Web Services are considered to be a promising technology
to add a new level of functionality to the existing World
Wide Web and change the way we find and share data in
order to fulfill sophisticated business demands. Usually Web
Services can be exploited in an isolated form, however when
no single Web Service can suit the functionality required by a
user, there should be a possibility to compose existing
services together in order to fulfill the user requirement [1].
For example, a summer vacation business process requires
the collaboration of at least four Web Services: flight
reservation, hotel booking, attraction searching, and user
notification. It’s obvious, in the nonexistence of composition
of Web Services, the user spends significant amount of time
visiting many sites, determining appropriate service
providers, entering his preferences repeatedly, integrating or
lining up the different type of results coming from different
sites.

The same service may be offered by different providers
with different non-functional or QoS, so the task of service
selection for Web Service composition is becoming
complicated. It is important to provide service consumers
with facilities for selecting optimal Web Services according
to their non-functional characteristics or QoS. Also, as
services are deployed on the unreliable Internet, and as they
are often long running, loosely coupled, and cross
administrative boundaries, failures are expected to happen
frequently during the execution of composite services [2].
Therefore, how to deliver reliable service composition over
unreliable services is a challenging problem. In service
composition, there is a lack of the flexibility to replace a
failed Web Service with a redundant alternative. If one of
these services is not available or fails during execution, a
dispatcher component needs to be able to dynamically switch
to alternative Web Services that provide equivalent
functionality in order to fulfill the consumer request.

With the whole consideration of the above two issues, we

propose an approach on a QoS-aware Web Service selection
for reliable Web Service composition. The ultimate goal of
our approach is to dynamically and incrementally select a
Web Service for executing each incoming operation on the
composite Web Service so as to maximize the likelihood of
successful execution. In order to achieve that we propose to
select and classify Web Services using Decision Tree
algorithm based on QoS attributes provided by the client.
Service classifier will improve selection of relevant Web
Services early in the composition process and also provide
flexibility to replace a failed Web Services with a redundant
alternative Web Services, resulting in high availability and
reliability of Web Service composition. We will provide an
implementation of our proposed approach along with
efficiency measurements through performance evaluation.

The rest of the paper is proceeds as follows. In Chapter 2,
we present related works. In Chapter 3 we describe our
proposed approach. Chapter 4 shows our implementation.
Chapter 5 describes performance evaluation and Chapter 6
highlights conclusion and future work.

2. RELATED STUDIES

The Web Service selection problem has been extensively
studied in the past few years. Different service selection
methods that have been designed from different perspective
have been proposed. Reputation based methods are one of
them and are used as a measure for narrowing down the
service selection. In [3], authors proposed a model of
reputation-enhances QoS-based Web Services discovery that
combines an augmented UDDI registry to publish the QoS
information and a reputation manager to assign reputation
scores to the services based on customer feedback of their
performance. In [4], authors present a technique to calculate
a reputation score per service using centrality measure of
Social Networks. They later use this score to produce
composition solutions that consists of services provided by
reputed providers. However, these reputation mechanisms

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 586 -

are simple and not robust against various cheating behaviors,
such as collusion among providers trying to boost the quality
of their own services and badmouth about the other ones.

Other approaches mainly focused on QoS-based Web
Service selection for composition. In [5], to solve QoS-aware
service selection problem in Web Services composition,
authors proposed a global optimization selection mechanism
based on prediction of local services’ QoS values. In [6],
authors propose a QoS-aware service selection model based
on fuzzy linear programming techniques, in order to identify
their dissimilarity on service alternatives, assist service
consumers in selecting most suitable services with
consideration of their expectations and preferences. However,
as a composition is composed by different Web Services
invocations, when one component service fails, the execution
of whole process will greatly influence. Therefore, how to
deliver reliable service composition over unreliable services
should be considered.

Several works have been proposed in the literature to
derive the reliability of a service composition. In [7], authors
proposed a mechanism that allows programmers to easily
develop fault-tolerant compositions using diverse Web
Services. The mechanism allows programmers to specify
alternative Web Services for each operation and offers a set
of artifacts that simplify the coding process. In [2], authors
present FACTS, a framework that can address the
aforementioned problems for fault-tolerant composition of
transactional Web service. The ultimate objective of FACTS
is an integrated environment for specification, verification,
and execution of fault-tolerant composite services.

3. SYSTEM DESIGN

In the last chapter we saw different service selection
methods for Web Service composition that have been
designed from different perspective. Taking the shortcomings
of all the discussed solutions into consideration, in this
section, we will describe our approach on a QoS-aware Web
Service selection for reliable Web Service composition.

The ultimate goal of our approach is to dynamically and
incrementally select a Web Service for executing each
incoming operation on the composite Web Service so as to
maximize the likelihood of successful execution. To achieve
this, our approach is divided into three main modules. These
modules and the relationship between them are shown in
Figure 1. Each part is designed and implemented as a
separate module. Detailed descriptions of each module are
given in the subsequent sections. These modules and their
functions are as follows:

The Initialization Module: This module performs
selection of Web Services as well as replication
management.
The Diagnostics Module: The module is responsible
for fault detection and fault notification.
Recovery Module: In this module, the invocation
activities are logged to a reliable storage for the future
recovery process.

3.1 The Initialization Module
As the first step to compose Web Services is to choose the

appropriate atom services, the FT-ADMIN retrieves

candidate Web Services interfaces from UDDI, and then
performs service selection for Web Service composition. In
our approach, we used Decision Tree for selection and
classifying QoS attributes. We can summarize the general
approach, as follows:

1. We can choose an attribute that best differentiates the
output attribute values.

2. Create a separate tree branch for each value of the
chosen attribute.

3. Divide the instances into subgroups so as to reflect
the attribute values of the chosen node. For each
subgroup, terminate the attribute selection process if:
A. All members of a subgroup have the same value

for the output attribute, terminate the attribute
selection process for the current path and label the
branch on the current path with the specified value.

B. The subgroup contains a single node or no further
distinguishing attributes can be determined.

4. For each subgroup created in third step that has not
been labeled as terminal, repeat the above process.

The algorithm is applied to the training data. We observe
that learning algorithms, including our new tree classifier,
generally improve accuracy after the attribute selection. Thus,
we believe our service classifier will improve selection of
relevant Web Services early in the composition process.

Replication management is also performed in initialization
module. When Fault Notifier informs a failure to the
replication management, according to our ranking made by
Decision tree, it selects one of the backup services instead of
failed service. Thus, flexibility is provided to replace a failed
Web Services with a redundant alternative.

3.2 The Diagnostics Module
The module is responsible for fault detection and fault

notification. Based on [2], we identified five types of Web
Services faults in the service composition process.

Logical faults are deliberately thrown by external
Web Services as they cannot complete successfully
due to various reasons.
System faults are raised by the supporting execution
environment.
Content faults refer to the corrupt service results.
Service Level Agreement (SLA) faults are raised when
Web Services complete the functional requirements
but violate the predefined SLA.
Security faults can happen when integrity or
confidentiality of some sensitive data, such as credit
card number or identification number, is attacked by
malicious hosts [8].

The Fault Detector diagnoses the services and sends fault
reports to the Fault Notifier when it detects a service failure
on the primarily selected services. The Fault Notifier then
notifies Replication Management to start the recovery
process.

3.3 The Logging/Recovery Module
The logging mechanism logs the invocation activities to a

centralized reliable logging file system for the future
recovery process. The logging mechanism has two main

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 587 -

(Figure 1) Proposed approach

functions. One function is to intercept the message and log it
in a reliable storage for the future recover process. The other
function is to checkpoint critical states periodically to
backups. When the recovery mechanism on new primary
member is activated, the recover mechanism retrieves the
invocation logs and replays the invocations if necessary.

4. SYSTEM IMPLEMENTATION

The prototype has been developed using the NetBeans 6.5
IDE environment using Java. Web Service Composition is
created in the Netbeans BPEL Designer as a BPEL module.
In order to present the most suitable service to the service
requester, we used the Quality of Service attributes. QoS is a
combination of several qualities or properties of a service,
such as: Availability, Reliability, Price, Throughput,
Response Time, Latency, Performance, Security, Regulatory,
Accessibility, Robustness/Flexibility, Accuracy, Servability,
Integrity and Reputation. QoS parameters determine the
performances of the Web Services and find out which Web
Services are best and meet user’s requirements.

We classify Web Services using Decision Tree into three
classes, such as High, Low and Average. Using this method
we obtained a classifier tree shown in Figure 3. In this tree,
nodes belong to the QoS attributes. Tracing these nodes, we
could reach leave nodes, which represent the classification of
the Web Service. This classifier consists of a committee of
cascading decision trees. Each tree is constructed by using
one of the top-ranked features as its root node.

5. PERFORMANCE EVALUATION

Performance evaluation was done by comparing two
cases: when using our selection model and when not using it.
Conventionally, provider Web Services are selected among

candidate provider Web Services based on different criteria
such as reputation and so on. In our model, provider Web
Services is selected using Decision Tree based on QoS
attributes provided by clients. We have applied both
conventional way and our model for the case study and
identified satisfaction of client Web Services by following
satisfaction degree equation.

Where is required QoS factors and

 is provided QoS value for required QoS.

(Figure 2) Comparison by Customer’s Satisfaction Degree

We had obtained average satisfaction degree for
conventional way is 0.61 and the average satisfaction rate
when using our model is 0.701. Although, there are pros and
cons in our evaluation, the initial result is good enough to

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 588 -

(Figure 3) Screenshot of Decision Tree

motivate us to move next step. We consider 0.701 is
reasonable result for initial step. The comparison result is
shown in Figure 2.

6. CONCLUSION

In this paper, we proposed to select and classify Web
Services using Decision Tree algorithm based on QoS
attributes provided by the client. Service classifier improved
selection of relevant Web Services early in the composition
process and also provide flexibility to replace a failed Web
Services with a redundant alternative Web Services, resulting
in high availability and reliability of Web Service
composition. We also provided an implementation of our
proposed approach along with efficiency measurements
through performance evaluation. Results of our
implementation and performance evaluation are good enough
to motivate us to move next step.

This work is just a first step of a wider project we are
currently working on towards to reliable Web Service
Composition. Due to the shortage of the space, we could not
formulate how to detect faults and recover from them in
details. Therefore in the future, we are planning to perform
more detailed research on reliable Web Services Composition
by describing fault detection, fault-tolerant strategies and
recovery procedures.

REFERENCE
[1] C. Lin, R. Sheu, Y. Chang, S. Yuan, “A relaxable

service selection algorithm for QoS-based web service
composition,” International Journal on Information and

Software Technology, Vol.53, No. 12, December 2011.
[2] A. Liu, Q. Li, L. Huang, M. Xiao, “FACTS: A

Framework for Fault-Tolerant Composition of Transactional
Web Services,” IEEE Transactions on Services Computing,
Vol.3, No.1, 2010.

[3] Z. Xu, P. Martin, W. Powley, F.Zulkernine,
“Reputation-Enhanced QoS-based Web Service Discovery,”
In the Proceeding of IEEE International Conference on Web
Services (ICWS 2007), USA, 2007.

[4] S. K. Bansal, A. Bansal, “Reputation-based Web
Services Selection for Composition,” In the Proceeding of
IEEE World Congress on Services, USA, 2011.

[5] M. Li, T. Deng, H. Sun, H. Guo, X. Liu, “GOS: A
Global Optimization Selection Approach for QoS-Aware
Web Service Composition,” In the Proceeding of IEEE
International Symposium on Service Oriented System
Engineering, pp.7- 14, 2010.

[6] P. Wing, K.M. Chao, C.C. Lo, “On optimal decision
for QoS-aware composite service selection,” Expert Systems
with Applications, Vol.37, No.1, pp.440-449, 2010.

[7] N. Laranjeiro, M. Vieira, “Towards Fault-Tolerance in
Web Service Composition,” In the Proceeding of the
Workshop on Engineering Fault-Tolerant Systems (EFT
2007), Croatia, 2007.

[8] A. Nasridinov, P.P. Hung, L. Qing, J.Y. Byun, “XaP-
SOAP: XML-based Attacks Tolerant SOAP Messages,”
Journal of KIISE: Computing Practices and Letters, 2012.

제37회 한국정보처리학회 춘계학술대회 논문집 제19권 1호 (2012. 4)

- 589 -

