• Title/Summary/Keyword: Functional properties

Search Result 3,758, Processing Time 0.026 seconds

Acetylation of Fist Protein form Alaska Pollack (명태 근육단백질의 아세틸화에 따른 기능성의 변화)

  • 홍정화;최진호;변대석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.19 no.3
    • /
    • pp.219-223
    • /
    • 1990
  • Myofibrillar protein from Alaska pollack was modified with acetic anhydride at pH 7.5 and $25^{\circ}C$ and changes in functional properties as affected by the degree of modification were determined. Acetylation of myofibrillar protein resulted in protein with unique functional properties dependent upon the degree of acetylation. By selecting appropriate degree of modification it was possible to control protein solubility heat coagulability calcium precipitability foaming and emulsion capa-city.

  • PDF

Structures and Spectroscopic Properties of $OC_nO$ (n=2-6): Density Functional Theory Study

  • 김경환;이보순;이성열
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.5
    • /
    • pp.553-557
    • /
    • 1998
  • Density functional theory calculations are reported for the carbon clusters bonded with two oxygen atoms $OC_No$ (n=2-6). The structures, vibrational frequencies and dipole moments are computed by BLYP theory with the 6-311G* basis set. Good agreement is obtained between the computed and experimentally observed properties. The ground states of these molecules are shown to be linear. Cyclic structures with higher energy are also predicted.

The Effect of Well-being Lifestyle and Functional Textile Knowledge on the Perception of High Functional Sports/Leisure Wear Importance (웰빙 라이프스타일과 기능성 섬유에 대한 지식이 고기능성 스포츠레저웨어의 중요도 지각에 미치는 영향)

  • Chung, Ihn-Hee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.33 no.9
    • /
    • pp.1495-1505
    • /
    • 2009
  • This study analyzes how well-being lifestyle and functional textile knowledge effect the perception of high functional sports/leisure wear importance. A survey was conducted among male and female sports/leisure wear consumers aged 15 and over in the Daegu and Gyeongbuk area from May $12^{th}$ to June $2^{nd}$ 2009. A total of 288 responses were analyzed using descriptive statistics, factor analysis, and regression. As a result, 9 factors were determined as sub-elements of a well-being lifestyle. Knowledge levels for functional textiles were high in elastic, UV blocking, air permeable, and antibacterial properties. The perception of high functional sports/leisure wear importance was positively influenced by functional textile knowledge and two well-being lifestyle constructing factors ('self-confidence/affirmative thinking' and 'health/environment oriented eating habits').

Characteristics of the Functional Panel Made from Foamed Aluminum (발포알루미늄을 이용하여 제조한 기능성 판넬 특성 연구)

  • Kim, Jae-Yong;Um, Myeong-Heon;An, Dae-Hyun;Shim, Myeong-Jin
    • Applied Chemistry for Engineering
    • /
    • v.17 no.1
    • /
    • pp.62-66
    • /
    • 2006
  • In this work, the properties of environmentally friendly functional panel made from waste aluminum were investigated. Product quality enhancement was pursued through an improved viscosity process, a mixing process by agitating, a foaming process, a cooling process, and a color addition process. An acoustic transmission attenuation test, a sound adsorption rate measurement test, and a foaming condition and scrap mixing test were implemented. As a result, the functional panel made from waste aluminum was ultra lightweight and had excellent properties such as soundproof, sound interception, and shielding harmful electromagnetic waves. Also, the functional panel showed low thermal conductivity (about 2.2 kcal/mh) and excellent heat-insulating property.

Improvement of Mechanical Interfacial Properties of Silica/Rubber Composites by Silane Coupling Agent Treatment (실란 커플링제를 이용한 실리카/고무 복합재료의 기계적 계면 물성의 향상)

  • Park, Soo-Jin;Cho, Ki-Sook;Lee, Jae-Rock
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.121-124
    • /
    • 2001
  • Surface-modified silica holds considerable promise in the development of advanced materials for good mechanical properties and stability. In this work, the surface and mechanical interfacial properties of silicas treated with silane coupling agents, such as Y-methacryloxy propyl trimethoxy silane (MPS). Y-glycidoxy propyl trimethoxy silane (GPS), and Y-mercapto propyl trimethoxy silane (MCPS), are investigated. The effect of silane surface treatments of silica on the surface properties and surface energetics are studied in terms of surface functional values and contact angle measurements. And their mechanical interfacial properties of the silica/rubber composites are studied by the composite tearing energy ($G_{IIIC}$). As a result. the mechanical interfacial properties are improved in the case of silane-treated composites compared with untreated one. It reveals that the functional groups on silica surface by silane surface treatments play an important role in improving the degree of adhesion at interfaces in a silica-filled rubber system.

  • PDF

The Embedded Atom Method Analysis of the Palldium (Palladium의 Embedded Atom Method 개발)

  • 정영관;김경훈;김세웅;이성희;이근진;박규섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.652-655
    • /
    • 2002
  • The embedded atom method based on the density functional theory is used for calculating ground state properties of realistic metal systems. In this paper, we had corrected constitutive formulae and parameters on the palladium for the purpose of doing Embedded Atom Method analysis. And then we have computed the properties of the palladium on the fundamental scale of the atomic structure. In result, simulated ground state properties, such as the lattice constant, elastics constants and the sublimation energy, show good agreement with Daw's simulation data and with experimental data.

  • PDF

Potential Use of Biopolymer-based Nanocomposite Films in Food Packaging Applications

  • Rhim, Jong-Whan
    • Food Science and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.691-709
    • /
    • 2007
  • Concerns on environmental waste problems caused by non-biodegradable petrochemical-based plastic packaging materials as well as consumer's demand for high quality food products has caused an increasing interest in developing biodegradable packaging materials using annually renewable natural biopolymers such as polysaccharides and proteins. However, inherent shortcomings of natural polymer-based packaging materials such as low mechanical properties and low water resistance are causing a major limitation for their industrial use. By the way, recent advent of nanocomposite technology rekindled interests on the use of natural biopolymers in the food packaging application. Polymer nanocomposites, especially natural biopolymer-layered silicate nanocomposites, exhibit markedly improved packaging properties due to their nanometer size dispersion. These improvements include increased mechanical strength, decreased gas permeability, and increased water resistance. Additionally, biologically active ingredients can be added to impart the desired functional properties to the resulting packaging materials. Consequently, natural biopolymer-based nanocomposite packaging materials with bio-functional properties have huge potential for application in the active food packaging industry. In this review, recent advances in the preparation and characterization of natural biopolymer-based nanocomposite films, and their potential use in food packaging applications are addressed.

The Novel Functional Chromophores Based on Squarylium Dyes

  • Park, Soo-Youl;Jun, Kun;Oh, Sea-Wha
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.428-432
    • /
    • 2005
  • Squarylium or squaraine dyes are derived from 1,2-dihydroxycyclobuten-3,4-dione, otherwise known as squaric acids. They are two principal types: the 1,2-bisdonorsubstituted derivatives, and the 1,3-bisdonorsubstituted derivatives. The former are essentially merocyanines and have no distinctive properties, whereas the latter represent a unique type of chromophore, which is neither a merocyanines nor cyanine and has exceptional light absorption characteristics. They also have many functional applications based on their special properties. Thus it was the objective of this research project to synthesize a range of 1,3-squarylium dyes of widely differing structural types, and to investigate their light absorption and fluorescence properties in general, and the color change properties of appropriate examples in particular. Also in this study, the various pHinduced colour change processes were examined.

Influence of Oxyfluorination on Physicochemical Characteristics of Carbon Fibers and their Reinforced Epoxy Composites

  • Seo, Min-Kang;Park, Soo-Jin
    • Macromolecular Research
    • /
    • v.17 no.6
    • /
    • pp.430-435
    • /
    • 2009
  • The effect of oxyfluorination temperature on the surface properties of carbon fibers and their reinforced epoxy composites was investigated. Infrared (IR) spectroscopy results for the oxyfluorinated carbon fibers revealed carboxyl/ester (C=O) and hydroxyl (O-H) groups at 1632 and 3450 $cm^{-1}$, respectively, and that the oxyfluorinated carbon fibers had a higher O-H peak intensity than that of the fluorinated ones. X-ray photoelectron spectroscopy (XPS) results indicated that after oxyfluorination, graphitic carbon was the major carbon functional component on the carbon fiber surfaces, while other functional groups present were C-O, C=O, HO-C=O, and $C-F_x$. These components improved the impact properties of oxyfluorinated carbon fibers-reinforced epoxy composites by improving the interfacial adhesion between the carbon fibers and the epoxy matrix resins.