• Title/Summary/Keyword: Functional cysteine

Search Result 86, Processing Time 0.029 seconds

Systematic approaches to identify functional genes using the FOX-hunting system in Chinese cabbage (FOX hunting system을 이용한 배추 기능유전자 탐색)

  • Lee, In-Hoo;Jung, Yu-Jin;Park, Jong-In;Nou, Ill-Sup;Kang, Kwon-Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.174-185
    • /
    • 2010
  • Full-length cDNAs are essential for the correct annotation of genomic sequences and for the functional analysis of genes and their products. To elucidate the functions of a large population of Chinese cabbage (Brassica rapa) genes and to search efficiently for agriculturally useful genes, we have been taking advantage of the full-length cDNA Over-eXpresser (FOX) gene hunting system. With oligo dT column it purify the each mRNA from the flower organs, leaf and stem tissue. And about 120,000 cDNAs from the library were transformed into $\lambda$-pFLCIII-F vector. Of which 115,000 cDNAs from the library were transformed into T-DNA binary vector, pBigs for transformation study. We used normalized full-length cDNA and introduced each cDNA into Arabidopsis by in planta transformation. Full-length Chinese cabbage cDNAs were expressed independently under the CaMV 35S promoter in Arabidopsis. Selfed seeds were harvested from transgenic Arabidopsis. We had selected 2,500 transgenic plants by hygromycin antibiotic tolerant test, and obtained a number of transgenic mutants. Each transgenic Arabidopsis was investigated in morphological changes, fertility and leaf colour. As a result, 285 possible morphological mutants were identified. Introduced cDNA was isolated by PCR amplification of the genomic DNA from the transgenic mutants. Sequencing result and BLAST analysis showed that most of the introduced cDNA were complete cDNAs and functional genes. Also, we examined the effect of Bromelain on enhancing resistance to soft rot in transgenic Chinese cabbage 'Osome'. The bromelain gene identified from FOX hunting system was transformed into Chinese cabbage using Agrobacterium methods. Transformants were screened by PCR, then RT-PCR and real time PCR were performed to analyze gene expression of cysteine protease in the T1 and T2 generations. The anti-bacterial activity of bromelain was tested in Chinese cabbages infected with soft rot bacteria. The results showed that the over-expressed bromelain gene from pineapple conferred enhanced resistance to soft rot in Chinese cabbage.

The Effect of Hydrolyzed Jeju Ulva pertusa on the Proliferation and Type I Collagen Synthesis in Replicative Senescent Fibroblasts (제주 구멍갈파래 가수분해물에 의한 노화된 섬유아세포 증식 및 콜라겐 합성증진 효과)

  • Ko, Hyun Ju;Kim, Gyoung Bum;Lee, Dong Hwan;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.177-186
    • /
    • 2013
  • Skin dermal fibroblast is the major collagen-producing cell type in human skin. As aging process continues in human skin, collagen production is reduced and fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This imbalance of collagen homeostasis impairs the structure and function of dermal collagenous extracellular matrix (ECM), thereby promoting skin aging. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis in primary human skin dermal fibroblast cells. It is known in aging fibroblast cells that elevated CCN1 expression substantially reduces type I procollagen and concurrently increases MMP-1, which initiates fibrillar collagen degradation. And proliferation rate of aging fibroblast cells is reduced compared to the pre-aging fibroblast cells. In this study, we confirmed that the replicative senescence dermal fibroblast cells increased the expression levels of MMP-1 and decreased the production of type I procollagen. Our results also showed that the replicative senescence dermal fibroblast cells increased in the expression of CCN1 and decreased in the proliferation rate. Hydrolyzed Ulva pertusa extracts are the materials to improve photo-aging by reducing the expression of MMP-1 that was increased by ultraviolet and by promoting the synthesis of new collagen from fibroblast cells. In this study, we also investigated the hydrolyzed U. pertusa extract to see whether it inhibits CCN1 protein expression in the senescence fibroblasts. Results showed that the hydrolyzed U. pertusa extract inhibited the expression of MMP-1 and increased the production of type I procollagen in the aging skin fibroblast cells cultured. In addition, the proteins that regulate collagen homeostasis CCN1 expression were greatly reduced. The hydrolyzed U. pertusa extract increased the proliferation rate of the aging fibroblast cells. These results suggest that replicative senescent fibroblast cells may be used in the study of cosmetic ingredients as a model of the natural aging. In conclusion, the hydrolyzed U. pertusa extract can be used in anti-wrinkle functional cosmetic material to improve the natural aging skin care as well as photo-aging.

A Case of Congenital Partial Nephrogenic Diabetes Insipidus (선천성 부분 신성 요붕증 1례)

  • Mo, Eun Ha;Nam, In Hye;Chung, Min Ja;Yu, Jae Hong
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.7
    • /
    • pp.902-905
    • /
    • 2002
  • The most common form of genetic nephrogenic diabetes insipidus(NDI), a rare inherited disorder, is congenital and is transmitted in an X-linked recessive mode. It is refractory to the antidiuretic effect of normal to moderately increased levels of plasma arginine vasopressin(AVP) but, in some cases, may respond to high levels of the hormone or its analogue, deamino-D-arginine vasopressin(DDAVP). X-linked congenital NDI has now been linked to over 128 different mutations in diverse coding regions of the AVP receptor 2(AVPR2) gene. The functional effects of these mutations vary from complete loss of responsiveness to a simple shift to the right in the dose response curve. We report a case of congenital partial NDI, with transversion of A to G at codon 280 of the AVPR2 gene, resulting in a subsequent change of amino acid from tyrosine to cysteine, and that has been effective with hydrochlorothiazide and high dose of DDAVP.

Sequence Analysis of the Gene Encoding gp55 Protein of Suri Strain, an Attenuated Classical Swine Fever (Hog Cholera) Virus (Classical Swine Fever (Hog Cholera) Virus 약독순화주 (Suri 주)의 gp55 Gnen 염기서열 분석)

  • Kim, Kui-Hyun;Chang, Kyung-Soo;Kang, Kyong-Im;Lee, Byung-Hyung;Park, Jong-Hyeon;An, Soo-Hwan;Jun, Moo-Hyung
    • The Journal of Korean Society of Virology
    • /
    • v.28 no.4
    • /
    • pp.303-316
    • /
    • 1998
  • An attenuated classical swine fever virus (CSFV), Suri strain, is a variant derived from a vaccine virus, LOM strain. This study was performed to elucidate the molecular biologcal properties of CSFV Suri strain, and to obtain the basic data for molecular epidemiological approaches for the disease. The truncated form of gp55 gene without the C-terminal transmembrane domain, in size of 1,023bp, was amplified by RT-PCR and sequenced by dye terminator cyclic sequencing method, and inserted into BamHI site of pAcGP67B baculovirus vector, establishing a cloned pAcHEG plasmid. By the nucleotide sequences determined, 341 amino acid sequences were predicted. As compared the nucleotide and amino acid sequences of gp55 of Suri with the various CSFV, Suri strain showed the high homology over 99.1% with ALD and LOM strains, but comparably the lower homology with Alfort and Brescia. In comparison of amino acid sequence in variable domain of gp55 protein, the similar tendency of homology was observed. In hydrophobicity analysis, all of four CSFV strains revealed the analogous patterns of hydrophobicity. The numbers and locations of N-glycosylation site and cysteine residues in gp55 were analyzed, those of Suri strain being coincident with ALD and LOM strains. The results suggest that gp55 in Suri strain has the high similarity to those in ALD and LOM strains in terms of the nucleotide and amino acid sequences and the functional properties of gp55 protein.

  • PDF

Isolation and Identification of the Antilisterial Bifidobacterium Isolates from the Infants Fecal Samples (유아의 분변으로부터 항리스테리아 활성의 Bifidobacterium 속 균주의 분리 및 동정)

  • Kim, Song-Yi;Kim, Ki-Hwan;Youn, Soon-Yong;Yoon, Sung-Sik
    • Journal of Dairy Science and Biotechnology
    • /
    • v.24 no.1
    • /
    • pp.19-28
    • /
    • 2006
  • This study was conducted to isolate antilisterial strains of the Bifidobacterium isolates from the infant feces. The bifidobacteria were isolated anaerobically on BL agar and screened for their inhibitory activity on the MRS-cysteine medium against three foodborne pathogens: Listeria monocytogenes, Bacillus cereus, and Staphylococcus aureus. Among the 52 bifidobacterial isolates, 5 strains(A24, Bl, B6, B10, and Bl2) were finally selected based on their stronger antilisterial activity against Listeria monocytogenes than other isolates tested. Morphologically, all the isolates were typically shown Y-and V-shaped under electron microscopic examination. Each isolate was primarily subjected to identification by a polymerase chain reaction(PCR) using a genus-specific primer designed for targeting the 16S rRNA gene sequence, and confirmed the primary identification data using an API-kit(Biomeriuex, France), commercially available product for identification based on biochemical and physiological traits. Of the isolates with antilisterial activity, strain A24 was finally confirmed as the Bifidobacterium longum A24.

  • PDF

GENETIC AND BIOCHEMICAL ANALYSIS OF A THERMOSTABLE CHITOSANASE FROM Bacillus sp. CK4

  • Yoon, Ho-Geun;Cho, Hong-Yon
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.157-167
    • /
    • 2000
  • A thermostable chitosanase gene from the isolated strain, Bacillus sp. CK4, was cloned, and its complete DNA sequence was determined. The thermostable chitosanase gene was composed of an 822-bp open reading frame which encodes a protein of 242 amino acids and a signal peptide corresponding to a 30 kDa enzyme in size. The deduced amino acid sequence of the chitosanase from Bacillus sp. CK4 exhibits 76.6%, 15.3%, and 14.2% similarities to those from Bacillus subtilis, Bacillus ehemensis, and Bacillus circulans, respectively. C-terminal homology analysis shows that Bacillus sp. CK4 belongs to the Cluster III group with Bacillus subtilis. The size of the gene was similar to that of a mesophile, Bacillus subtilis showing a higher preference for codons ending in G or C. The functional importance of a conserved region in a novel chitosanase from Bacillus sp. CK4 was investigated. Each of the three carboxylic amino acid residues were changed to E50D/Q, E62D/Q, and D66N/E by site-directed mutagenesis. The D66N/E mutants enzymes had remarkably decreased kinetic parameters such as $V_{max}$ and k$\sub$cat/, indicating that the Asp-66 residue was essential for catalysis. The thermostable chitosanase contains three cysteine residues at position 49, 72, and 211. Titration of the Cys residues with DTNB showed that none of them were involved in disulfide bond. The C49S and C72S mutant enzymes were as stable to thermal inactivation and denaturating agents as the wild-type enzyme. However the half-life of the C211S mutant enzyme was less than 60 min at 80$^{\circ}C$, while that of the wild type enzyme was about 90 min. Moreover, the residual activity of C211S was substantially decreased by 8 M urea, and fully lost catalytic activity by 40% ethanol. These results show that the substitution of Cys with Ser at position 211 seems to affect the conformational stability of the chitosanase.

  • PDF

Profiling of differential expressed proteins from various explants in Platycodon grandiflorum

  • Kim, Hye-Rim;Kwon, Soo Jeong;Roy, Swapan Kumar;Kamal, Abu Hena Mostafa;Cho, Seong-Woo;Kim, Hag Hyun;Boo, Hee Ock;Cho, Kab Yeon;Woo, Sun-Hee
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.131-131
    • /
    • 2017
  • Though the Platycodon grandiflorum, has a broad range of pharmacologic properties, but the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two-dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}2-fold$) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, the frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). Taken together, the protein profile may provide insight clues for better understanding the characteristics of proteins and its metabolic activities in various explants of this essential medicinal plant P. grandiflorum.

  • PDF

Structural Analyses of Zinc Finger Domains for Specific Interactions with DNA

  • Eom, Ki Seong;Cheong, Jin Sung;Lee, Seung Jae
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.12
    • /
    • pp.2019-2029
    • /
    • 2016
  • Zinc finger proteins are among the most extensively applied metalloproteins in the field of biotechnology owing to their unique structural and functional aspects as transcriptional and translational regulators. The classical zinc fingers are the largest family of zinc proteins and they provide critical roles in physiological systems from prokaryotes to eukaryotes. Two cysteine and two histidine residues ($Cys_2His_2$) coordinate to the zinc ion for the structural functions to generate a ${\beta}{\beta}{\alpha}$ fold, and this secondary structure supports specific interactions with their binding partners, including DNA, RNA, lipids, proteins, and small molecules. In this account, the structural similarity and differences of well-known $Cys_2His_2$-type zinc fingers such as zinc interaction factor 268 (ZIF268), transcription factor IIIA (TFIIIA), GAGA, and Ros will be explained. These proteins perform their specific roles in species from archaea to eukaryotes and they show significant structural similarity; however, their aligned amino acids present low sequence homology. These zinc finger proteins have different numbers of domains for their structural roles to maintain biological progress through transcriptional regulations from exogenous stresses. The superimposed structures of these finger domains provide interesting details when these fingers are applied to specific gene binding and editing. The structural information in this study will aid in the selection of unique types of zinc finger applications in vivo and in vitro approaches, because biophysical backgrounds including complex structures and binding affinities aid in the protein design area.

Proteome Profiling Unfurl Differential Expressed Proteins from Various Explants in Platycodon Grandiflorum

  • Kim, Hye-Rim;Kwon, Soo-Jeong;Roy, Swapan Kumar;Cho, Seong-Woo;Kim, Hag-Hyun;Cho, Kab-Yeon;Boo, Hee-Ock;Woo, Sun-Hee
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.97-106
    • /
    • 2015
  • Platycodon grandiflorum, commonly known as Doraji in Korea, has a wide range of pharmacologic properties, such as reducing adiposity and hyperlipidemia, and antiatherosclerotic effects. However, the mechanisms underlying these effects remain unclear. In order to profile proteins from the nodal segment, callus, root and shoot, high throughput proteome approach was executed in the present study. Two dimensional gels stained with CBB, a total of 84 differential expressed proteins were confirmed out of 839 protein spots using image analysis by Progenesis SameSpot software. Out of total differential expressed spots, 58 differential expressed protein spots (${\geq}$ 2-fold) were analyzed using MASCOT search engine according to the similarity of sequences with previously characterized proteins along with the UniProt database. Out of 58 differential expressed protein, 32 protein spots were up-regulated such as ribulose-1,5-bisphosphate carboxylase, endoplasmic oxidoreductin-1, heat stress transcription factor A3, RNA pseudourine synthase 4, cysteine proteinase, GntR family transcriptional regulator, E3 xyloglucan 6-xylosyltransferase, while 26 differential protein spots were down-regulated such as L-ascorbate oxidase precursor, late embryogenesis abundant protein D-34, putative SCO1 protein, oxygen-evolving enhancer protein 3. However, frequency distribution of identified proteins using iProClass databases, and assignment by function based on gene ontology revealed that the identified proteins from the explants were mainly associated with the nucleic acid binding (17%), transferase activity (14%) and ion binding (12%). In that way, the exclusive protein profile may provide insight clues for better understanding the characteristics of proteins and metabolic activity in various explants of the economically important medicinal plant Platycodon grandiflorum.

Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells

  • Park, Jin-Ah;Na, Han-Heom;Jin, Hyeon-Ok;Kim, Keun-Cheol
    • Molecules and Cells
    • /
    • v.42 no.12
    • /
    • pp.884-892
    • /
    • 2019
  • Piperlongumine (PL), a natural alkaloid compound isolated from long pepper (Piper longum), can selectively kill cancer cells, but not normal cells, by accumulation of reactive oxygen species (ROS). The objective of this study was to investigate functional roles of expression of SETDB1 and FosB during PL treatment in MCF7 breast cancer cells. PL downregulates SETDB1 expression, and decreased SETDB1 expression enhanced caspase 9 dependent-PARP cleavage during PL-induced cell death. PL treatment generated ROS. ROS inhibitor NAC (N-acetyl cysteine) recovered SETDB1 expression decreased by PL. Decreased SETDB1 expression induced transcriptional activity of FosB during PL treatment. PARP cleavage and positive annexin V level were increased during PL treatment with FosB overexpression whereas PARP cleavage and positive annexin V level were decreased during PL treatment with siFosB transfection, implying that FosB might be a pro-apoptotic protein for induction of cell death in PL-treated MCF7 breast cancer cells. PL induced cell death in A549 lung cancer cells, but molecular changes involved in the induction of these cell deaths might be different. These results suggest that SETDB1 mediated FosB expression may induce cell death in PL-treated MCF7 breast cancer cells.