Browse > Article
http://dx.doi.org/10.14348/molcells.2019.0088

Increased Expression of FosB through Reactive Oxygen Species Accumulation Functions as Pro-Apoptotic Protein in Piperlongumine Treated MCF7 Breast Cancer Cells  

Park, Jin-Ah (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
Na, Han-Heom (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
Jin, Hyeon-Ok (KIRAMS Radiation Biobank, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences)
Kim, Keun-Cheol (Department of Biological Sciences, College of Natural Sciences, Kangwon National University)
Abstract
Piperlongumine (PL), a natural alkaloid compound isolated from long pepper (Piper longum), can selectively kill cancer cells, but not normal cells, by accumulation of reactive oxygen species (ROS). The objective of this study was to investigate functional roles of expression of SETDB1 and FosB during PL treatment in MCF7 breast cancer cells. PL downregulates SETDB1 expression, and decreased SETDB1 expression enhanced caspase 9 dependent-PARP cleavage during PL-induced cell death. PL treatment generated ROS. ROS inhibitor NAC (N-acetyl cysteine) recovered SETDB1 expression decreased by PL. Decreased SETDB1 expression induced transcriptional activity of FosB during PL treatment. PARP cleavage and positive annexin V level were increased during PL treatment with FosB overexpression whereas PARP cleavage and positive annexin V level were decreased during PL treatment with siFosB transfection, implying that FosB might be a pro-apoptotic protein for induction of cell death in PL-treated MCF7 breast cancer cells. PL induced cell death in A549 lung cancer cells, but molecular changes involved in the induction of these cell deaths might be different. These results suggest that SETDB1 mediated FosB expression may induce cell death in PL-treated MCF7 breast cancer cells.
Keywords
breast cancer; cell death; FosB; piperlongumine; reactive oxygen species; SETDB1;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Yadav, S., Kalra, N., Ganju, L., and Singh, M. (2017). Activator protein-1 (AP-1): a bridge between life and death in lung epithelial (A549) cells under hypoxia. Mol. Cell. Biochem. 436, 99-110.   DOI
2 Yang, L., Xia, L., Wu, D.Y., Wang, H., Chansky, H.A., Schubach, W.H., Hickstein, D.D., and Zhang, Y. (2002). Molecular cloning of ESET, a novel histone H3-specific methyltransferase that interacts with ERG transcription factor. Oncogene 21, 148-152.   DOI
3 Zhang, B., Shi, X., Xu, G., Kang, W., Zhang, W., Zhang, S., Cao, Y., Qian, L., Zhan, P., Yan, H., et al. (2017). Elevated PRC1 in gastric carcinoma exerts oncogenic function and is targeted by piperlongumine in a p53-dependent manner. J. Cell. Mol. Med. 21, 1329-1341.   DOI
4 Al Emran, A., Marzese, D.M., Menon, D.R., Stark, M.S., Torrano, J., Hammerlindl, H., Zhang, G., Brafford, P., Salomon, M.P., Nelson, N., et al. (2018). Distinct histone modifications denote early stress-induced drug tolerance in cancer. Oncotarget 9, 8206-8222.   DOI
5 Barrett, C.S., Millena, A.C., and Khan, S.A. (2017). TGF-beta effects on prostate cancer cell migration and invasion require FosB. Prostate 77, 72-81.   DOI
6 Dhillon, A.S., Hagan, S., Rath, O., and Kolch, W. (2007). MAP kinase signalling pathways in cancer. Oncogene 26, 3279-3290.   DOI
7 Du, D., Katsuno, Y., Meyer, D., Budi, E.H., Chen, S.H., Koeppen, H., Wang, H., Akhurst, R.J., and Derynck, R. (2018). Smad3-mediated recruitment of the methyltransferase SETDB1/ESET controls Snail1 expression and epithelialmesenchymal transition. EMBO Rep. 19, 135-155.   DOI
8 Ho, Y.F., Karsani, S.A., Yong, W.K., and Abd Malek, S.N. (2013). Induction of apoptosis and cell cycle blockade by helichrysetin in a549 human lung adenocarcinoma cells. Evid. Based Complement. Alternat. Med. 2013, 857257.
9 Gajewski, P.A., Turecki, G., and Robison, A.J. (2016). Differential expression of FosB proteins and potential target genes in select brain regions of addiction and depression patients. PLoS One 11, e0160355.   DOI
10 Guo, J., Dai, X., Laurent, B., Zheng, N., Gan, W., Zhang, J., Guo, A., Yuan, M., Liu, P., Asara, J.M., et al. (2019). AKT methylation by SETDB1 promotes AKT kinase activity and oncogenic functions. Nat. Cell Biol. 21, 226-237.   DOI
11 Kim, J.A. (2018). Cooperative instruction of signaling and metabolic pathways on the epigenetic landscape. Mol. Cells 41, 264-270.   DOI
12 Huang, J., Huang, W., Liu, M., Zhu, J., Jiang, D., Xiong, Y., Zhen, Y., Yang, D., Chen, Z., Peng, L., et al. (2018). Enhanced expression of SETDB1 possesses prognostic value and promotes cell proliferation, migration and invasion in nasopharyngeal carcinoma. Oncol. Rep. 40, 1017-1025.
13 Jin, H.O., Lee, Y.H., Park, J.A., Lee, H.N., Kim, J.H., Kim, J.Y., Kim, B., Hong, S.E., Kim, H.A., Kim, E.K., et al. (2014). Piperlongumine induces cell death through ROS-mediated CHOP activation and potentiates TRAIL-induced cell death in breast cancer cells. J. Cancer Res. Clin. Oncol. 140, 2039-2046.   DOI
14 Jin, H.O., Park, J.A., Kim, H.A., Chang, Y.H., Hong, Y.J., Park, I.C., and Lee, J.K. (2017). Piperlongumine downregulates the expression of HER family in breast cancer cells. Biochem. Biophys. Res. Commun. 486, 1083-1089.   DOI
15 Lee, J.K. and Kim, K.C. (2013). DZNep, inhibitor of S-adenosylhomocysteine hydrolase, down-regulates expression of SETDB1 H3K9me3 HMTase in human lung cancer cells. Biochem. Biophys. Res. Commun. 438, 647-652.   DOI
16 Li, H., Li, L., Zheng, H., Yao, X., and Zang, W. (2016). Regulatory effects of DeltaFosB on proliferation and apoptosis of MCF-7 breast cancer cells. Tumor Biol. 37, 6053-6063.   DOI
17 Na, H.H., Noh, H.J., Cheong, H.M., Kang, Y., and Kim, K.C. (2016). SETDB1 mediated FosB expression increases the cell proliferation rate during anticancer drug therapy. BMB Rep. 49, 238-243.   DOI
18 Liu, J.M., Pan, F., Li, L., Liu, Q.R., Chen, Y., Xiong, X.X., Cheng, K., Yu, S.B., Shi, Z., Yu, A.C., et al. (2013). Piperlongumine selectively kills glioblastoma multiforme cells via reactive oxygen species accumulation dependent JNK and p38 activation. Biochem. Biophys. Res. Commun. 437, 87-93.   DOI
19 Lopez-Knowles, E., Wilkerson, P.M., Ribas, R., Anderson, H., Mackay, A., Ghazoui, Z., Rani, A., Osin, P., Nerurkar, A., Renshaw, L., et al. (2015). Integrative analyses identify modulators of response to neoadjuvant aromatase inhibitors in patients with early breast cancer. Breast Cancer Res. 17, 35.   DOI
20 Na, H.H. and Kim, K.C. (2018). SETDB1-mediated FosB regulation via ERK2 is associated with an increase in cell invasiveness during anticancer drug treatment of A549 human lung cancer cells. Biochem. Biophys. Res. Commun. 495, 512-518.   DOI
21 Noh, H.J., Kim, K.A., and Kim, K.C. (2014). p53 down-regulates SETDB1 gene expression during paclitaxel induced-cell death. Biochem. Biophys. Res. Commun. 446, 43-48.   DOI
22 Olcina, M.M., Leszczynska, K.B., Senra, J.M., Isa, N.F., Harada, H., and Hammond, E.M. (2016). H3K9me3 facilitates hypoxia-induced p53-dependent apoptosis through repression of APAK. Oncogene 35, 793-799.   DOI
23 Park, M.J., Lee, D.E., Shim, M.K., Jang, E.H., Lee, J.K., Jeong, S.Y., and Kim, J.H. (2017). Piperlongumine inhibits TGF-beta-induced epithelial-tomesenchymal transition by modulating the expression of E-cadherin, Snail1, and Twist1. Eur. J. Pharmacol. 812, 243-249.   DOI
24 Sun, Q.Y., Ding, L.W., Xiao, J.F., Chien, W., Lim, S.L., Hattori, N., Goodglick, L., Chia, D., Mah, V., Alavi, M., et al. (2015). SETDB1 accelerates tumourigenesis by regulating the WNT signalling pathway. J. Pathol. 235, 559-570.   DOI
25 Raj, L., Ide, T., Gurkar, A.U., Foley, M., Schenone, M., Li, X., Tolliday, N.J., Golub, T.R., Carr, S.A., Shamji, A.F., et al. (2011). Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475, 231-234.   DOI
26 Regina, C., Compagnone, M., Peschiaroli, A., Lena, A., Annicchiarico-Petruzzelli, M., Piro, M.C., Melino, G., and Candi, E. (2016). Setdb1, a novel interactor of DeltaNp63, is involved in breast tumorigenesis. Oncotarget 7, 28836-28848.   DOI
27 Rogalska, A., Szwed, M., and Rychlik, B. (2014). The connection between the toxicity of anthracyclines and their ability to modulate the P-glycoprotein-mediated transport in A549, HepG2, and MCF-7 cells. Sci. World J. 2014, 819548.
28 Ryu, T.Y., Kim, K., Kim, S.K., Oh, J.H., Min, J.K., Jung, C.R., Son, M.Y., Kim, D.S., and Cho, H.S. (2018). SETDB1 regulates SMAD7 expression for breast cancer metastasis. BMB Rep. 52, 139-144.   DOI
29 Shahzad, M.M., Arevalo, J.M., Armaiz-Pena, G.N., Lu, C., Stone, R.L., Moreno-Smith, M., Nishimura, M., Lee, J.W., Jennings, N.B., Bottsford-Miller, J., et al. (2010). Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J. Biol. Chem. 285, 35462-35470.   DOI
30 Tang, C., Jiang, Y., Shao, W., Shi, W., Gao, X., Qin, W., Jiang, T., Wang, F., and Feng, S. (2016). Abnormal expression of FOSB correlates with tumor progression and poor survival in patients with gastric cancer. Int. J. Oncol. 49, 1489-1496.   DOI
31 Ting, C.H., Chen, Y.C., Wu, C.J., and Chen, J.Y. (2016). Targeting FOSB with a cationic antimicrobial peptide, TP4, for treatment of triple-negative breast cancer. Oncotarget 7, 40329-40347.   DOI
32 Wang, S., He, M., Li, L., Liang, Z., Zou, Z., and Tao, A. (2016). Cell-in-cell death is not restricted by caspase-3 deficiency in MCF-7 cells. J. Breast Cancer 19, 231-241.   DOI
33 Ting, C.H., Lee, K.Y., Wu, S.M., Feng, P.H., Chan, Y.F., Chen, Y.C., and Chen, J.Y. (2019). FOSB(-)PCDHB13 axis disrupts the microtubule network in non-small cell lung cancer. Cancers 11, 107.   DOI
34 Tkach, V., Tulchinsky, E., Lukanidin, E., Vinson, C., Bock, E., and Berezin, V. (2003). Role of the Fos family members, c-Fos, Fra-1 and Fra-2, in the regulation of cell motility. Oncogene 22, 5045-5054.   DOI
35 Tulchinsky, E. (2000). Fos family members: regulation, structure and role in oncogenic transformation. Histol. Histopathol. 15, 921-928.
36 Wong, C.M., Wei, L., Law, C.T., Ho, D.W., Tsang, F.H., Au, S.L., Sze, K.M., Lee, J.M., Wong, C.C., and Ng, I.O. (2016). Up-regulation of histone methyltransferase SETDB1 by multiple mechanisms in hepatocellular carcinoma promotes cancer metastasis. Hepatology 63, 474-487.   DOI
37 Wu, M., Fan, B., Guo, Q., Li, Y., Chen, R., Lv, N., Diao, Y., and Luo, Y. (2018). Knockdown of SETDB1 inhibits breast cancer progression by miR-381-3prelated regulation. Biol. Res. 51, 39.   DOI
38 Xiao, J.F., Sun, Q.Y., Ding, L.W., Chien, W., Liu, X.Y., Mayakonda, A., Jiang, Y.Y., Loh, X.Y., Ran, X.B., Doan, N.B., et al. (2018). The c-MYC-BMI1 axis is essential for SETDB1-mediated breast tumourigenesis. J. Pathol. 246, 89-102.   DOI