• Title/Summary/Keyword: Functional compounds

Search Result 1,197, Processing Time 0.031 seconds

Nanotechnology Applications in Functional Foods; Opportunities and Challenges

  • Singh, Harjinder
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Increasing knowledge on the link between diet and human health has generated a lot of interest in the development of functional foods. However, several challenges, including discovering of beneficial compounds, establishing optimal intake levels, and developing adequate food delivering matrix and product formulations, need to be addressed. A number of new processes and materials derived from nanotechnology have the potential to provide new solutions in many of these fronts. Nanotechnology is concerned with the manipulation of materials at the atomic and molecular scales to create structures that are less than 100 nm in size in one dimension. By carefully choosing the molecular components, it seems possible to design particles with different surface properties. Several food-based nanodelivery vehicles, such as protein-polysaccharide coacervates, multiple emulsions, liposomes and cochleates have been developed on a laboratory scale, but there have been very limited applications in real food systems. There are also public concerns about potential negative effects of nanotechnology-based delivery systems on human health. This paper provides an overview of the new opportunities and challenges for nanotechnology-based systems in future functional food development.

Anticancer Properties of Psidium guajava - a Mini-Review

  • Correa, Mariana Goncalves;Couto, Jessica Soldani;Teodoro, Anderson Junger
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.9
    • /
    • pp.4199-4204
    • /
    • 2016
  • Cancer is a complex disease caused by a progressive accumulation of multiple genetic mutations. Consumption of fruits is associated with lower risk of several cancers, which is mainly associated to their phytochemical content. The use of functional foods and chemopreventive compounds seems to contribute in this process, acting by mechanisms of antioxidant, anti-inflammatory, anti-angiogenic and hormonal. The Psidium Guajava has high potential functional related to pigments who are involved in the process of cancer prevention by having antioxidant activity. The aim of the present review is to expose some chemical compounds from P. Guajava fractions and their association with anti-carcinogenic function. The evidences supports the theory of anticancer properties of P. Guajava, although the mechanisms are still not fully elucidated, but may include scavenging free radicals, regulation of gene expression, modulation of cellular signalling pathways including those involved in DNA damage repair, cell proliferation and apoptosis.

Isolation of Prenylated Isoflavonoids from Cudrania tricuspidata Fruits that Inhibit A2E Photooxidation

  • Uddin, Golam Mezbah;Lee, Hee-Ju;Jeon, Je-Seung;Chung, Dong-Hwa;Kim, Chul-Young
    • Natural Product Sciences
    • /
    • v.17 no.3
    • /
    • pp.206-211
    • /
    • 2011
  • High-performance liquid chromatography coupled to an online $ABTS^+$-based assay (online HPLC-$ABTS^+$) system was used to determine the principal antioxidants in Cudrania tricuspidata fruits. Six prenylated isoflavonoids (1 - 6) were isolated from C. tricuspidata fruits according to the online HPLC-$ABTS^+$ system. The structures of isolated compounds, alpiniumisoflavone (1), 6,8-diprenylorobol (2), 6,8-diprenylgenistein (3), pomiferin (4), 4'-methylalpiniumisoflavone (5), and osajin (6) were identified by their retention time, UV spectra, ESI-MS, and NMR data. Among these compounds, 6,8-diprenylorobol (2) and pomiferin (4) reduced A2E photooxidation in a dose dependent manner.

Quantitative analysis of water-soluble vitamins and polyphenolic compounds in tomato varieties (Solanum lycopersicum L.) (토마토(Solanum lycopersicum L.) 품종 간 수용성 비타민과 폴리페놀계 성분 함량 변이 분석)

  • Kim, Daen;Son, Beunggu;Choi, Youngwhan;Kang, Jumsoon;Lee, Yongjae;Je, Beungil;Park, Younghoon
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.78-89
    • /
    • 2020
  • Tomato fruit quality is determined by the contents of various functional metabolites in addition to fruit appearance. To develop tomato cultivars with higher amounts of functional compounds, an efficient quantification method is required to identify the natural variations in the compounds in the tomato germplasm. In this study, we investigated tomato varieties, which included 23 inbred lines and 12 commercial F1 cultivars, for their contents of seven watersoluble vitamins (vitamin C, vitamins B1, B2, B3, B5, B6, and B9) and five polyphenolic compounds (quercetin, rutin, kaempferol, myricetin, and naringenin chalcone). The results of high performance liquid chromatography and liquid chromatography-mass spectrometry showed that vitamin C and naringenin chalcone were the major water-soluble vitamins and polyphenolic compounds, respectively, and their abundance was highly variable depending on the cultivar. By contrast, the contents of vitamin B1, quercetin, and kaempferol were lowest among the cultivars. With regard to the relationship between metabolic compounds and fruit characteristics, a significant association was found in fruit size, indicating that cherry tomato varieties contain higher amounts of the compounds compared to large fresh-type varieties. However, no direct association was detected in fruit color, except for naringenin chalcone. The results of this study provide new insights on the quantification of metabolic compounds and the selection of breeding materials, which are prerequisites for the development of functional tomato varieties.

Isolation and Structural Determination of Free Radical Scavenging Compounds from Korean Fermented Red Pepper Paste (Kochujang)

  • Chung, Jin-Ho;Shin, Heung-Chule;Cho, Jeong-Yong;Kang, Seong-Koo;Lee, Hyoung-Jae;Shin, Soo-Cheol;Park, Keun-Hyung;Moon, Jae-Hak
    • Food Science and Biotechnology
    • /
    • v.18 no.2
    • /
    • pp.463-470
    • /
    • 2009
  • Sixteen antioxidative active compounds isolated from the EtOAc layer of MeOH extracts of kochujang, Korean fermented red pepper paste, were structurally elucidated as fumaric acid, methyl succinate, succinic acid furan-2-yl ester methyl ester (gochujangate, a novel compound), 2-hydroxy-3-phenylpropanoic acid, 3,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, 2,4-dihydroxybenzoic acid, 6,7-dihydroxy-2H-chromen-2-one (esculetin), caffeic acid, cis-p-coumaric acid, trans-p-coumaric acid, daidzin, genistin, apigenin 7-O-$\beta$-D-apiofuranosyl($1{\rightarrow}2$)-$\beta$-D-glucopyranoside, apigenin 7-O-$\beta$-Dglucopyranoside, and quercetin 3-O-$\alpha$-L-rhamnopyranoside by mass spectrometry (MS) and nuclear magnetic resonance (NMR) experiments. These compounds were analyzed for the first time as antioxidants from kochujang.

Method validation of marker compounds from Angelicae Dahuricae Radix as functional food ingredients (건강기능식품 원료로서 구릿대의 지표성분 분석법 검증)

  • Bo-Ram Choi;Dahye Yoon;Hyeon Seon Na;Geum-Soog Kim;Kyung-Sook Han;Sookyeong Lee;Dae Young Lee
    • Journal of Applied Biological Chemistry
    • /
    • v.65 no.4
    • /
    • pp.343-348
    • /
    • 2022
  • This study was performed to establish an analytical method for the standardization of Angelicae Dahuricae Radix as a functional ingredient. We established six compounds including oxypeucedanin hydrate (1), byakangelcol (2), oxypeucedanin (3), imperatorin (4), phellopterin (5) and isoimperatorin (6) as marker compounds of Angelicae Dahuricae Radix. An analytical method using Ultra Performance Liquid Chromatography (UPLC) was established and validated for marker compounds of Angelicae Dahuricae Radix. The specificity was confirmed by the chromatogram from UPLC and the value of coefficient determination was also higher than 0.999, indicating high linearity. The relative standard deviation (RSD) and recovery of marker compounds were less than 5% and in the range of 90- 110%, respectively, which means that this method has high accuracy and precision. Therefore, this analytical method could be used as basic data for the development of functional ingredients for health functional food of Angelicae Dahuricae Radix.

A Novel Benzoyl Glucoside and Phenolic Compounds from the Leaves of Camellia japonica

  • Cho, Jeong-Yong;Ji, Soo-Hyun;Moon, Jae-Hak;Lee, Kye-Han;Jung, Kyung-Hee;Park, Keun-Hyung
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.1060-1065
    • /
    • 2008
  • A novel benzoyl glucoside (4) and 13 known phenolic compounds were isolated from the leaves of Camellia japonica by a guided 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The structure of 4 was determined to be 4-hydroxy-2-methoxyphenol 1-O-$\beta$-D-(6'-O-p-hydroxylbenzoyl)-glucopyranoside (camelliadiphenoside). The 13 known compounds were identified as (E)-coniferyl alcohol (1), (-)-epicatechin (2), 4-hydroxyphenol 1-O-$\beta$-D-(6-O-p-hydroxybenzoyl) glucopyranoside (3), naringenin 7-O-$\beta$-D-glucopyranoside (5), quercetin 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (6), kaempferol 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (7), (+)-catechin (8), 1,6-di-O-p-hydroxybenzoyl-$\beta$-D-glucopyranoside (9), phloretin 2'-O-$\beta$-D-glucopyranoside (10), quercetin 3-O-$\beta$-D-glucopyranoside (11), quercetin 3-O-$\beta$-D-galactopyranoside (12), kaempferol 3-O-$\beta$-D-galactopyranoside (13), and kaempferol 3-O-$\beta$-D-glucopyranoside (14). Their chemical structures were determined by the spectroscopic data of fast atom bondardment mass spectrometry (FABMS) and nuclear magnetic resonance (NMR). Flavonoids having the catechol moiety showed significantly higher DPPH radical scavenging activity than other isolated compounds having monohydroxy phenyl group.

Comparison of Functional Compounds and Micronutrients of Chicken Breast Meat by Breeds

  • Ali, Mahabbat;Lee, Seong-Yun;Park, Ji-Young;Jung, Samooel;Jo, Cheorun;Nam, Ki-Chang
    • Food Science of Animal Resources
    • /
    • v.39 no.4
    • /
    • pp.632-642
    • /
    • 2019
  • The concentrations of functional compounds and micronutrients of chicken breast from native chickens were compared with those from broiler. Totally 200 male chicks from a commercial native chicken (HH) and three newly bred native chicken strains (2A, 2C, and 2D) were reared for about 2 kg of final live weight up to 12 wk. After slaughtered, antioxidant dipeptides, reducing sugar, free amino acids, vitamins, and minerals of the breast muscles were analyzed with those from broilers with similar live weight. Mostly native chicken strains had higher contents of carnosine, anserine, and reducing sugar than the broiler. Especially HH implied the highest values of carnosine and anserine, and 2C did the highest of reducing sugar (p<0.05). Vitamin A contents between native chickens and broiler were not significantly different (p>0.05). The contents of ${\alpha}-tocopherol$ were significantly higher in 2C than those of HH or broiler (p<0.05). Native chicken strains contained lower cholesterol levels than the broiler. Broiler had higher contents of P, Mg, and Na than native chickens (p<0.05), but it had lower content of Cu than HH or 2A. The savory free amino acids including glutamic acid was highest in 2A than the other native chickens and broiler (p<0.05). This study confirms that certain new strains of native chickens be a good source in terms of functional compounds and micronutrients which can be attractive health promoting nutritional quality factors.

Characteristics of Chlorination Byproducts Formation of Amino Acid Compounds (아미노산 성분에서의 염소 소독부산물 생성 특성)

  • Son, Hee-Jong;Choi, Young-Ik;Bae, Sang-Dae;Jung, Chul-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.332-340
    • /
    • 2009
  • This study was conducted to analyze and determine formation potentials for chlorination disinfection by-products (DBPs) from twenty amino acid compounds with or without $Br^-$. Two of twenty amino acid compound were tryptophan and tyrosine that were relatively shown high for formation of trihalomethanes (THMs)/dissolved organic carbon (DOC) whether or not $Br^-$ presented. Other 18 compounds were shown low for formation of THMs/DOC whether or not $Br^-$ presented. Five amino acid compounds that were tryptophan, tyrosine, asparagine, aspartic acid and histidine were shown high for formation of haloacetic acids (HAAs)/DOC whether or not $Br^-$ presented. Although formation of dichloroacetic acid (DCAA) was dominated in asparagine, aspartic acid and histidine, trichloroacetic acid (TCAA) was dominated in tryptophan and tryptophan. The formation of haloacetnitriles (HANs)/DOC whether or not $Br^-$ presented was high in Aspartic acid, histidine, asparagine, tyrosine and tryptophan. Specially, aspartic acid was detected 660.2 ${\mu}$g/mg (HAN/DOC). Although the formation of chloralhydrate (CH)/DOC was shown high in asparagine, aspartic acid, histidine, methionine, tryptophan and tyrosine, the formation of Chloropicrin (CP)/DOC was low (1 ${\mu}$g/mg) in twenty amino acid compounds. The formations of THM, HAA and HAN were also investigated in functional groups of amino acids. The highest formation of THM was shown in amino acids compounds (tryptophan and tyrosine) with an aromatic functional group. Highest, second-highest, third-highest and fourth-highest functional groups for formation of HAA were aromatic, neutral, acidic and basic respectively. In order of increasing functional groups for formation of HAN were acidic, basic, neutral and aromatic.

Group Contribution Method and Support Vector Regression based Model for Predicting Physical Properties of Aromatic Compounds (Group Contribution Method 및 Support Vector Regression 기반 모델을 이용한 방향족 화합물 물성치 예측에 관한 연구)

  • Kang, Ha Yeong;Oh, Chang Bo;Won, Yong Sun;Liu, J. Jay;Lee, Chang Jun
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • To simulate a process model in the field of chemical engineering, it is very important to identify the physical properties of novel materials as well as existing materials. However, it is difficult to measure the physical properties throughout a set of experiments due to the potential risk and cost. To address this, this study aims to develop a property prediction model based on the group contribution method for aromatic chemical compounds including benzene rings. The benzene rings of aromatic materials have a significant impact on their physical properties. To establish the prediction model, 42 important functional groups that determine the physical properties are considered, and the total numbers of functional groups on 147 aromatic chemical compounds are counted to prepare a dataset. Support vector regression is employed to prepare a prediction model to handle sparse and high-dimensional data. To verify the efficacy of this study, the results of this study are compared with those of previous studies. Despite the different datasets in the previous studies, the comparison indicated the enhanced performance in this study. Moreover, there are few reports on predicting the physical properties of aromatic compounds. This study can provide an effective method to estimate the physical properties of unknown chemical compounds and contribute toward reducing the experimental efforts for measuring physical properties.