A Novel Benzoyl Glucoside and Phenolic Compounds from the Leaves of Camellia japonica

  • Cho, Jeong-Yong (Department of Food Science and Technology, and Functional Food Research Center, Chonnam National University) ;
  • Ji, Soo-Hyun (Department of Food Science and Technology, and Functional Food Research Center, Chonnam National University) ;
  • Moon, Jae-Hak (Department of Food Science and Technology, and Functional Food Research Center, Chonnam National University) ;
  • Lee, Kye-Han (Division of Forest Resources and Landscape Architecture, College of Agriculture & Life Sciences, Chonnam National University) ;
  • Jung, Kyung-Hee (Jeonnam Biotechnology Research Center) ;
  • Park, Keun-Hyung (Department of Food Science and Technology, and Functional Food Research Center, Chonnam National University)
  • Published : 2008.10.31

Abstract

A novel benzoyl glucoside (4) and 13 known phenolic compounds were isolated from the leaves of Camellia japonica by a guided 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay. The structure of 4 was determined to be 4-hydroxy-2-methoxyphenol 1-O-$\beta$-D-(6'-O-p-hydroxylbenzoyl)-glucopyranoside (camelliadiphenoside). The 13 known compounds were identified as (E)-coniferyl alcohol (1), (-)-epicatechin (2), 4-hydroxyphenol 1-O-$\beta$-D-(6-O-p-hydroxybenzoyl) glucopyranoside (3), naringenin 7-O-$\beta$-D-glucopyranoside (5), quercetin 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (6), kaempferol 3-O-$\beta$-L-rhamnopyranosyl(1$\rightarrow$6)-$\beta$-D-glucopyranoside (7), (+)-catechin (8), 1,6-di-O-p-hydroxybenzoyl-$\beta$-D-glucopyranoside (9), phloretin 2'-O-$\beta$-D-glucopyranoside (10), quercetin 3-O-$\beta$-D-glucopyranoside (11), quercetin 3-O-$\beta$-D-galactopyranoside (12), kaempferol 3-O-$\beta$-D-galactopyranoside (13), and kaempferol 3-O-$\beta$-D-glucopyranoside (14). Their chemical structures were determined by the spectroscopic data of fast atom bondardment mass spectrometry (FABMS) and nuclear magnetic resonance (NMR). Flavonoids having the catechol moiety showed significantly higher DPPH radical scavenging activity than other isolated compounds having monohydroxy phenyl group.

Keywords

References

  1. Akihisa T, Yasukawa K, Kimura Y, Takase S, Yamanouchi S, Tamura T. Triterpene alcohols from camellia and sasanqua oils and their anti-inflammatory effects. Chem. Pharm. Bull. 45: 2016-2023 (1997) https://doi.org/10.1248/cpb.45.2016
  2. Hwang EJ, Cha YJ, Park MH, Lee JW, Lee SY. Cytotoxicity and chemosensitizing effect of Camellia (Camellia japonica) tea extracts. J. Korean Soc. Food Sci. Nutr. 33: 487-493 (2004) https://doi.org/10.3746/jkfn.2004.33.3.487
  3. Ito S, Kodama M, Konoike M. Structure of camelliagenins. Tetrahedron Lett. 8: 591-596 (1967) https://doi.org/10.1016/S0040-4039(00)90555-0
  4. Itokawa H, Sawada N, Murakami T. Structures of camelliagenins A, B, and C obtained from Camellia japonica. Chem. Pharm. Bull. 17: 474-480 (1969) https://doi.org/10.1248/cpb.17.474
  5. Yoshikawa M, Murakami T, Yoshizumi S, Murakami N, Yamahara J, Matsuda H. Camelliasaponins $B_1,\;B_2,\;C_1,\;and\; C_2$, new type inhibitors of ethanol absorption in rats from the seeds of Camellia japonica L. Chem. Pharm. Bull. 42: 742-744 (1996)
  6. Yoshikawa M, Murakami T, Yoshizumi S, Murakami N, Yamahara J, Matsuda H. Bioactive saponins and glycosides. V. Acylated polyhydroxyolean-12-ene oligoglycosides, camelliasaponins $A_1,\;A_2,\;B_1,\; B_2,\;C_1,\;and\;C_2,$ from the seeds of Camellia japonica L.: Structures and inhibitory activity on alcohol absorption. Chem. Pharm. Bull. 44: 1899-1907 (1996) https://doi.org/10.1248/cpb.44.1899
  7. Itokawa H, Nakajima H, Ikuta A, Iitaka Y. Two triterpenes from the flowers of Camellia japonica. Phytochemistry 20: 2539-2542 (1981) https://doi.org/10.1016/0031-9422(81)83089-0
  8. Nakagawa M, Sakamoto Y. Isolation of (-)-epicatechol and (+)-catechol from the leaf of Camellia japonica. Tea Industry and Technology Research, Japan 34: 3472-3476 (1967)
  9. Numata A, Kitajima A, Katsuno T, Yamamoto K, Nagahama Na, Takahashi C, Fujiki R, Nabae M. An antifeedant for the yellow butterfly larvae in Camellia japonica: A revised structure of camellidin II. Chem. Pharm. Bull. 35: 3948-3951 (1987) https://doi.org/10.1248/cpb.35.3948
  10. Hatano T, Shida S, Han L, Okuda T. Tannins of Theaceous plants. III. Camelliatannins A and B, two new complex tannins from Camellia japonica L. Chem. Pharm. Bull. 39: 876-880 (1991) https://doi.org/10.1248/cpb.39.876
  11. Onodera K, Hanashiro K, Yasumoto T. Camellianoside, a novel antioxidant glycoside from the leaves of Camellia japonica. Biosci. Biotech. Bioch. 70: 1995-1998 (2006) https://doi.org/10.1271/bbb.60112
  12. Abe N, Nemoto A, Tsuchiya Y, Hojo H, Hirota A. Studies of the 1,1-diphenyl-2-picrylhydrazyl radical scavenging mechanism for a 2-pyrone compound. Biosci. Biotech. Bioch. 64: 306-333 (2000) https://doi.org/10.1271/bbb.64.306
  13. Takao T, Kitatani F, Watanabe N, Yagi A, Sakata K. A simple screening method for antioxidants and isolation of several antioxidants produced by marine bacteria from fish and shellfish. Biosci. Biotech. Bioch. 58: 1780-1783 (1994) https://doi.org/10.1271/bbb.58.1780
  14. Masika PJ, Sultana N, Afolayan AJ. Antibacterial activity of two flavonoids isolated from Schotia latifolia. Pharm. Biol. 42: 105-108 (2004) https://doi.org/10.1080/13880200490510856
  15. Morikawa H, Kasai R, Otsuka H, Hirata E, Shinzato T, Aramoto M, Takeda Y. Terpenic and phenolic glycosides from leaves of Breynia officinalis HEMSL. Chem. Pharm. Bull. 52: 1086-1090 (2004) https://doi.org/10.1248/cpb.52.1086
  16. Shengmin S, Karen L, Jeong WS, Paul AL, Ho CT, Robert TR. Antioxidative phenolic compounds isolated from almond skins (Prunus amygdalus Batsch). J. Agr. Food Chem. 50: 2459-2463 (2002) https://doi.org/10.1021/jf011533+
  17. Han JT, Lee SY, Kim KN, Baek NI. Rutin, an antioxidant compound isolated from the fruit of Prunus mume. Korean J. Food Sci. Technol. 44: 35-37 (2001)
  18. Li B, Luo Y. Studies on chemical constituents of Camellia oleifera abel. Chem. J. Internet 5: 20-23 (2003)
  19. Foo LY, Newman R, Waghorn G, Mcnabb WC, Ulyatt MJ. Proanthocyanidins from Lotus corniculatus. Phytochemistry 41: 617-624 (1996) https://doi.org/10.1016/0031-9422(95)00602-8
  20. Machida K, Ando M, Yaoita Y, Kakuda R, Kikuchi M. Phenolic compounds of the leaves of Catalpa ovata G. DON. Nat. Med. 55: 64-67 (2001)
  21. Kim SJ, Cho JY, Wee JH, Jang MY, Kim C, Rim YS, Shin SC, Ma SJ, Moon JH, Park KH. Isolation and characterization of antioxidative compounds from the aerial parts of Angelica keiskei. Food Sci. Biotechnol. 14: 58-63 (2005)
  22. Scharbert S, Holzmann N, Hofmann T. Identification of the astringent taste compounds in black tea infusion by combining instrumental analysis and human bioresponse. J. Agr. Food Chem. 52: 3498-3508 (2004) https://doi.org/10.1021/jf049802u
  23. Kim YC, Kim MY, Takaya Y, Niwa M, Chung SK. Phenolic antioxidants isolated from mulberry leaves. Food Sci. Biotechnol. 16: 854-857 (2007)
  24. Yao CS, Lin M, Wang L. Isolation and biomimetic synthesis of antiinflammatory stilbenolignans from Gnetum cleistostachyum. Chem. Pharm. Bull. 54: 1053-1057 (2006) https://doi.org/10.1248/cpb.54.1053
  25. Lu Y, Foo LY. Identification and quantification of major polyphenols in apple pomace. Food Chem. 59: 187-194 (1997) https://doi.org/10.1016/S0308-8146(96)00287-7
  26. Wee JH, Moon JH, Eun JB, Chung JH, Kim YG, Park KH. Isolation and identification of antioxidants from peanut shells and the relationship between structure and antioxidant activity. Food Sci. Biotechnol. 16: 116-122 (2007)
  27. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933-956 (1996) https://doi.org/10.1016/0891-5849(95)02227-9
  28. Cao G, Sofic E, Prior R. Antioxidant and prooxidant behavior of flavonoids. Structure-activity relationships. Free Radical Bio. Med. 22: 749-760 (1997) https://doi.org/10.1016/S0891-5849(96)00351-6