• 제목/요약/키워드: Functional Transition

검색결과 336건 처리시간 0.024초

유채 종자의 Microbody 기능 발달에 미치는 빛의 영향 (Effect of Light on Development of Microbody Functions in the Cotyledons of Rape (Brassica napus L.) Seedlings)

  • 피문자
    • Journal of Plant Biology
    • /
    • 제25권2호
    • /
    • pp.73-81
    • /
    • 1982
  • The changes in activities of glyoxysomal and peroxisomal enzymes during the transition from fat degradation to photosynthesis were investigated with the cotyledns of rape (Brassica napus L.) seedlings. The development and disappearance of glyoxysomal enzyme (isocitrate lyase, EC 4.1.3.1; malate dehydrogenase, EC 1.1.1.37; catalase, EC 1.11.1.6) activities took place independently of light. It is concluded that the mobilization of storage fat is independent of photomorphogenesis. During early periods of development in the dark of light (days 1 through 3), the glyoxysomal enzyme activities were relatively high and the enzyme activities rose to a peak at 3rd day after sowing. Thereafter, the activities decreased gradually. While glyoxysomal enzyme activities were dropping, the peroxisomal enzyme (glycolate oxidase, EC 1.1.3.1) activities were increasing rapidly during the transition period in the light. Moreover, the changes of enzyme activities of the common microbody marker, catalase, indicated both functional patterns. The enzyme patterns in rape cotyledons indicate that the glyoxysomal function of microbodies is replaced by the peroxisomal function of these organelles during the transition from fat degradation to photosynthesis.

  • PDF

형광 나노입자: 합성 및 응용 (Fluorescent Nanoparticles: Synthesis and Applications)

  • 김영국;송병관;이정구;백연경
    • 한국분말재료학회지
    • /
    • 제27권2호
    • /
    • pp.154-163
    • /
    • 2020
  • Fluorescent nanoparticles are characterized by their unique properties such as luminescence, optical transparency, and sensitivity to various chemical environments. For example, semiconductor nanocrystals (quantum dots), which are nanophosphors doped with transition metal or rare earth ions, can be classified as fluorescent nanoparticles. Tuning their optical and physico-chemical properties can be carried out by considering and taking advantage of nanoscale effects. For instance, quantum confinement causes a much higher fluorescence with nanoparticles than with their bulk counterparts. Recently, various types of fluorescent nanoparticles have been synthesized to extend their applications to other fields. In this study, State-of-the-art fluorescent nanoparticles are reviewed with emphasis on their analytical and anti-counterfeiting applications and synthesis processes. Moreover, the fundamental principles behind the exceptional properties of fluorescent nanoparticles are discussed.

양극산화 모드 전환을 통한 기능성 알루미늄 표면 연구 (Fabrication of functional aluminum surface through anodization mode transition)

  • Park, Youngju;Jeong, Chanyoung
    • 한국표면공학회지
    • /
    • 제55권6호
    • /
    • pp.417-424
    • /
    • 2022
  • This research develops an easy-to-use, environmentally friendly method for fabricating functional 1050 aluminum alloy surfaces with excellent corrosion resistance. Functional aluminum surfaces with various nanostructures are fabricated by controlling the experimental conditions of anodizing process. The experiment used a multi-step anodizing process that alternates between two different anodizing modes, mild anodizing (MA) and hard anodizing (HA), together with a pore-widening (PW) process. Among them, the nanostructured surface with a small solid fraction shows superhydrophobicity with a contact angle of more than 170° after water-repellent coating. In addition, the surface with superhydrophobicity is difficult for corrosive substances to penetrate, so the corrosion resistance is greatly improved.

특징형상을 이용한 복합곡면의 설계 (A Feature-based Approach to Compound Surface Design)

  • 정재훈;김광수
    • 한국정밀공학회지
    • /
    • 제12권2호
    • /
    • pp.112-122
    • /
    • 1995
  • While many surfaces such as automobile outer panels, ship hulls and airfoils are characterized by their smooth, free-form shapes, a far larger class of functional surfaces are characterized by highly irregular, multi-featured shapes consisting of pockets, channels, ribs, etc. In constaract to the design of aesthetic, free-form surfaces, functional surface design can perhaps best be viewed as a process of assembling a collection of known component surfaces to form a single compound surface. In this paper, we presents a feature-based functional surface modeling method. A single feature involves a secondary surface, which we must join to a primary surface with a smooth transition between two boundary courves. Through recursive blending of a secondary surface with the primary surface, the mullti-featured surface is represented. After constructing a compound surface, we generate the Z-map for NC machining of the surface. Offsetting the Z-map using the inverse offsetting technique, we get CL tool paths with out gouging.

  • PDF

Synthesis of CdS Nanocrystals with Different Shapes via a Colloidal Method

  • Bai, Jie;Liu, Changsong;Niu, Jinzhong;Wang, Hongzhe;Xu, Shasha;Shen, Huaibin;Li, Lin Song
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권2호
    • /
    • pp.397-400
    • /
    • 2014
  • Size- and shape-controlled monodisperse wurtzite structured CdS nanorods have been successfully synthesized using a facile solution-based colloidal method. Depending on the control of injection/growth temperatures and the variation of Cd-to-S molar ratios, the morphology of the CdS nanocrystals (NCs) can be adjusted into bullet-like, rod-like, and dot-like shapes. X-ray diffraction (XRD), transition electron microscopy (TEM), and absorption spectroscopy were used to characterize the structure, morphology, and optical properties of as-synthesized CdS NCs. It was found that uniform CdS nanorods could be successfully synthesized when the injection and growth temperatures were very high (> $360^{\circ}C$). The aspect ratios of different shaped (bullet-like or rod-like) CdS NCs could be controlled by simply adjusting the molar ratios between Cd and S.

차세대 2차원 소재, MXenes의 연구 동향 (Research trends of MXenes as the Next-generation Two-dimensional Materials)

  • 이호준;윤예준;장진광;변종민
    • 한국분말재료학회지
    • /
    • 제28권2호
    • /
    • pp.150-163
    • /
    • 2021
  • Interest in eco-friendly materials with high efficiencies is increasing significantly as science and technology undergo a paradigm shift toward environment-friendly and sustainable development. MXenes, a class of two-dimensional inorganic compounds, are generally defined as transition metal carbides or nitrides composed of few-atoms-thick layers with functional groups. Recently MXenes, because of their desirable electrical, thermal, and mechanical properties that emerge from conductive layered structures with tunable surface terminations, have garnered significant attention as promising candidates for energy storage applications (e.g., supercapacitors and electrode materials for Li-ion batteries), water purification, and gas sensors. In this review, we introduce MXenes and describe their properties and research trends by classifying them into two main categories: transition metal carbides and nitrides, including Ti-based MXenes, Mo-based MXenes, and Nb-based MXenes.

주택지의 기능변화에 따른 가로환경 개선 방안 - 대구시의 1970년대 토지구획정리사업지구를 중심으로 - (Street Environment Improvement Plan Resulting from the Functional Transition of Residential Area - Focused on the land reallocation project in the 1970's of the Metropolitan City of Daegu -)

  • 김한수
    • 한국주거학회논문집
    • /
    • 제25권6호
    • /
    • pp.19-26
    • /
    • 2014
  • This study aims to derive street design alternative which can be applied to residential area as the functions of land use have been changed. The main findings are as follows; First, the study area in this research is on the process of the functional transition from full residential use to residential-commercial mixed use with cafes and restaurants. Second, dead-end streets in residential areas needs to be widened in order to meet the increasing needs of pedestrians and cars. One of the suggested strategies is to remove fences on the dead-end streets. Third, based on the main findings, this research can suggest following policies. Citizen participation is necessary in building land use plans and space design in old residential areas. Citizens can participate in architectural and landscape contracts, district-unit plan with the help of experts such as urban planners and architects.

Density Functional Study on the C-H Bond Cleavage of Aldimine by a Rhodium(I) Catalyst

  • Yoo, Kyung-Hwa;Jun, Chul-Ho;Choi, Cheol-Ho;Sim, Eun-Ji
    • Bulletin of the Korean Chemical Society
    • /
    • 제29권10호
    • /
    • pp.1920-1926
    • /
    • 2008
  • We investigated the C-H bond activation mechanism of aldimine by the [RhCl$(PPH_3)_3$] model catalyst using DFT B3LYP//SBKJC/6-31G*/6-31G on GAMESS. Due to their potential utility in organic synthesis, C-H bond activation is one of the most active research fields in organic and organometallic chemistry. C-H bond activation by a transition metal catalyst can be classified into two types of mechanisms: direct C-H bond cleavage by the metal catalyst or a multi-step mechanism via a tetrahedral transition state. There are three structural isomers of [RhCl$(PH_3)_2$] coordinated aldimine that differ in the position of chloride with respect to the molecular plane. By comparing activation energies of the overall reaction pathways that the three isomeric structures follow in each mechanism, we found that the C-H bond activation of aldimine by the [RhCl$(PH_3)_3$] catalyst occurs through the tetrahedral intermediate.

Rh-doped carbon nanotubes as a superior media for the adsorption of O2 and O3 molecules: a density functional theory study

  • Cui, Hao;Zhang, Xiaoxing;Yao, Qiang;Miao, Yulong;Tang, Ju
    • Carbon letters
    • /
    • 제28권
    • /
    • pp.55-59
    • /
    • 2018
  • Transition-metal-embedded carbon nanotubes (CNTs) have been accepted as a novel type of sensing material due to the combined advantage of the transition metal, which possesses good catalytic behavior for gas interaction, and CNTs, with large effective surface areas that present good adsorption ability towards gas molecules. In this work, we simulate the adsorption of $O_2$ and $O_3$ onto Rh-doped CNT in an effort to understand the adsorbing behavior of such a surface. Results indicate that the proposed material presents good adsorbing ability and capacities for these two gases, especially $O_3$ molecules, as a result of the relatively large conductivity changes. The frontier molecular orbital theory reveals that the conductivity of Rh-CNT would undergo a decrease after the adsorption of two such oxidizing gases due to the lower electron activity and density of this media. Our calculations are meaningful as they can supply experimentalists with potential sensing material prospects with which to exploit chemical sensors.