• Title/Summary/Keyword: Functional Near-Infrared Spectroscopy (fNIRS)

Search Result 17, Processing Time 0.027 seconds

Application of Functional Near-Infrared Spectroscopy to the Study of Brain Function in Humans and Animal Models

  • Kim, Hak Yeong;Seo, Kain;Jeon, Hong Jin;Lee, Unjoo;Lee, Hyosang
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.523-532
    • /
    • 2017
  • Functional near-infrared spectroscopy (fNIRS) is a noninvasive optical imaging technique that indirectly assesses neuronal activity by measuring changes in oxygenated and deoxygenated hemoglobin in tissues using near-infrared light. fNIRS has been used not only to investigate cortical activity in healthy human subjects and animals but also to reveal abnormalities in brain function in patients suffering from neurological and psychiatric disorders and in animals that exhibit disease conditions. Because of its safety, quietness, resistance to motion artifacts, and portability, fNIRS has become a tool to complement conventional imaging techniques in measuring hemodynamic responses while a subject performs diverse cognitive and behavioral tasks in test settings that are more ecologically relevant and involve social interaction. In this review, we introduce the basic principles of fNIRS and discuss the application of this technique in human and animal studies.

Clinical Applications of Functional Near-Infrared Spectroscopy in Children and Adolescents with Psychiatric Disorders

  • Lee, Yeon Jung;Kim, Minjae;Kim, Ji-Sun;Lee, Yun Sung;Shin, Jeong Eun
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.32 no.3
    • /
    • pp.99-103
    • /
    • 2021
  • The purpose of this review is to examine the clinical use of functional near-infrared spectroscopy (fNIRS) in children and adolescents with psychiatric disorders. Many studies have been conducted using objective evaluation tools for psychiatric evaluation, such as predicting psychiatric symptoms and treatment responses. Compared to other tools, fNIRS has the advantage of being a noninvasive, inexpensive, and portable method and can be used with patients in the awake state. This study mainly focused on its use in patients with attention-deficit/hyperactivity disorder and autism spectrum disorder. We hope that research involving fNIRS will be actively conducted in various diseases in the future.

An Exploratory Study on the fNIRS-based Analysis of Business Problem Solving Creativity (기능적 근적외 분광법(fNIRS) 기반의 비즈니스 문제해결 창의성에 관한 탐색연구)

  • Ryu, Jae Kwan;Lee, Kun Chang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2018.05a
    • /
    • pp.167-168
    • /
    • 2018
  • The importance of business problem-solving creativity (BPSC) becomes crucial much more as competitive situations go on in the market. However, how to assess the BPSC remains an unsolved research issue yet in the literature. In this sense, this study proposes an exploratory analysis of the BPSC from the view of neuro-science experiments called fNIRS. The fNIRS represents a functional near-infrared spectroscopy, a new type of neuro-science research paradigm. This study proposes an exploratory level of how to conduct the fNIRS-based experiments to analyze the BPSC.

  • PDF

Preliminary Study of Gender-Based Brain Lateralization Using Multi-Channel Near-Infrared Spectroscopy

  • V, Zephaniah Phillips;Kim, Evgenii;Kim, Jae Gwan
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.284-296
    • /
    • 2015
  • It has been thought that males tend to use their brain hemispheres more laterally than females. However, recent fMRI studies have shown that there may be no difference in brain lateralization between genders. Functional near-infrared spectroscopy (fNIRS) presents a unique opportunity to acquire real time measurements of blood oxygenation changes to observe neural activity specific to the brain's left and right hemispheres. Using an in-house built multichannel fNIRS system, brain lateralization was observed from seven males and four females according to specially designed tasks for left and right hemisphere activation. The Pearson correlation coefficient and a modified Lateralization Index metric for continuous wave fNIRS systems were calculated to quantify brain lateralization. The preliminary results point to no significant difference in lateral hemodynamic changes between the genders. However, the correlation of symmetrical channel pairs decreased as the experiments progressed. To further develop this study, the subject's performance and the removal of global interference must be implemented for an improved study of brain lateralization.

Convergence Study of Brain Activity by Dominant Hand Using functional near-infrared spectroscopy(fNIRS) (기능적 근적외선 분광법(fNIRS)을 이용한 우세손에 따른 뇌 활성화도에 대한 융합 연구)

  • Kim, Mi Kyeong;Park, Sun Ha;Park, Hae Yean
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.12
    • /
    • pp.323-330
    • /
    • 2021
  • In this study, we intended to examine the difference in brain activation due to dominant and non-dominant hands using functional near-infrared spectroscopy(fNIRS) in 10 healthy adults. Box & Block Test(BBT) was conducted under two conditions: dominant hand and non-dominant hand. During the experiment, brain activity was measured using fNIRS and signals were analyzed using nirsLAB v2019.04 software after the experiment was completed. As a result, 6 out of 10 people showed activation of the cerebral hemisphere related to the dominant hand, and only 3 out of 10 people showed activation of the cerebral hemisphere related to the non-dominant hand. In other words, both dominant and non-dominant hand cconfirmed that the cerebral hemispheres related to dominant hands were more active. Therefore, it is believed that fNIRS can be used as a fundamental data applicable to children with sensory processing disorders that are difficult to identify dominant hand.

Prefrontal Cortex Activation during Diaphragmatic Breathing in Women with Fibromyalgia: An fNIRS Case Report

  • Hyunjoong Kim;Jihye Jung;Seungwon Lee
    • Physical Therapy Rehabilitation Science
    • /
    • v.12 no.3
    • /
    • pp.334-339
    • /
    • 2023
  • Objective: The present study is designed to delve deeper into the realm of fibromyalgia (FM) symptom management by investigating the effects of diaphragmatic breathing on the prefrontal cortex (PFC) in women diagnosed with FM. Using functional near-infrared spectroscopy (fNIRS), the study aims to capture real-time PFC activation patterns during the practice of diaphragmatic breathing. The overarching objective is to identify and understand the underlying neural mechanisms that may contribute to the observed clinical benefits of this relaxation technique. Design: A case report Methods: To achieve this, a twofold approach was adopted: First, the patient's breathing patterns were meticulously examined to detect any aberrations. Following this, fNIRS was employed, focusing on the activation dynamics within the PFC. Results: Our examination unveiled a notable breathing pattern disorder inherent to the FM patient. More intriguingly, the fNIRS analysis offered compelling insights: the ventrolateral prefrontal cortex (VLPFC) displayed increased activation. In stark contrast, regions of the anterior prefrontal cortex (aPFC) and orbitofrontal cortex (OFC) manifested decreased activity, especially when benchmarked against typical activations seen in healthy adults. Conclusions: These findings, derived from a nuanced examination of FM, underscore the condition's multifaceted nature. They highlight the imperative to look beyond conventional symptomatology and appreciate the profound neurological and physiological intricacies that define FM.

Development of a Hybrid fNIRS-EEG System for a Portable Sleep Pattern Monitoring Device (휴대용 수면 패턴 모니터링을 위한 복합 fNIRS-EEG 시스템 개발)

  • Gyoung-Hahn Kim;Seong-Woo Woo;Sung Hun Ha;Jinlong Piao;MD Sahin Sarker;Baejeong Park;Chang-Sei Kim
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.392-403
    • /
    • 2023
  • This study presents a new hybrid fNIRS-EEG system to meet the demand for a lightweight and low-cost sleep pattern monitoring device. For multiple-channel configuration, a six-channel electroencephalogram (EEG) and a functional near-infrared spectroscopy (fNIRS) system with eight photodiodes (PD) and four dual-wavelength LEDs are designed. To enhance the convenience of signal measurement, the device is miniaturized into a patch-like form, enabling simultaneous measurement on the forehead. Due to its fully integrated functionality, the developed system is advantageous for performing sleep stage classification with high-temporal and spatial resolution data. This can be realized by utilizing a two-dimensional (2D) brain activation map based on the concentration changes in oxyhemoglobin and deoxyhemoglobin during sleep stage transitions. For the system verification, the phantom model with known optical properties was tested at first, and then the sleep experiment for a human subject was conducted. The experimental results show that the developed system qualifies as a portable hybrid fNIRS-EEG sleep pattern monitoring device.

Mobile Application for Real-Time Monitoring of Concentration Based on fNIRS (fNIRS 기반 실시간 집중력 모니터링 모바일 애플리케이션)

  • Kang, Sunhwa;Lee, Hyeonju;Na, Heewon;Dong, Suh-Yeon
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.2
    • /
    • pp.295-304
    • /
    • 2021
  • Learning assistance system that continuously measures user's concentration will be helpful to grasp the concentration pattern and adjust the learning method accordingly to improve the learning efficiency. Although a lot of various learning aids have been proposed, there have been few studies on the concentration monitoring system in real time. Therefore, in this study, we developed an Android-based mobile application that can measure concentration during study by using functional near-infrared spectroscopy, which is used to measure brain activity. First, the task accuracy was predicted at a maximum level of 93.75% from the prefrontal oxygenation characteristics measured while performing the visual Q&A task on 11 college students, and a concentration calculation formula based on a linear regression model was derived. Then, a survey on the usability of the mobile application was conducted, overall high satisfaction and positive opinions were obtained. From these findings, this application can be used as a customized learning aid application for users, and further, it can help educators improve the quality of classes based on the level of concentration of learners.

A Study on Brain Activation during playing a computer game using a fNIRS (컴퓨터 게임 중 fNIRS 기반 뇌 활성화 연구)

  • Kang, Won-Seok;Abibullaev, Berdakh;Lee, SeungHyun;An, Jinung
    • Annual Conference of KIPS
    • /
    • 2009.11a
    • /
    • pp.407-408
    • /
    • 2009
  • fNIRS(functional Near Infrared Spectroscopy)는 비침습형 뇌기능 분석 시스템으로 뇌활성화 시 옥시 헤모글로빈(oxy-hemoglobin)과 디옥시헤모글로빈(deoxy-hemoglobin) 변화량을 측정할 수 있는 장치이다. 본 논문에서는 뇌기능 분석 장치인 fNIRS를 이용하여 피험자가 컴퓨터 게임 중에 어떤 뇌활성화 패턴을 보이는지를 실험하였다. 컴퓨터 게임 주의 및 집중 시 뇌의 전두엽(Frontal Lobe) 영역이 활성화 및 변화되는 것을 실험결과로 확인하였다. 그리고 게임 중 다른 사람이 피험자에게 개입을 하였을 때 전두엽의 활성화 영역이 다른 패턴을 보이는 것을 실험결과로 확인하였다.

Integrative medicine rehabilitation of simultaneous intra-dermal acupuncture (IDA) and neurodevelopmental treatment (NDT) for children with cerebral palsy: Pilot Study of Functional Near-Infrared Spectroscopy (뇌성마비 소아에 대한 중추신경계재활치료 및 피내침 병용치료에 관한 연구 - 기능성 적외선 분광법(fNIRS)를 이용한 예비 연구 -)

  • Chang, Seok Joo;Nam, Yeon Gyo;Kim, Ji Hyun;Ko, Mun Jung;Kwon, Bum Sun;Lim, Chi-Yeon;Min, Sang Yeon
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.35 no.1
    • /
    • pp.139-147
    • /
    • 2021
  • Objectives The purpose of this study is to investigate differences in brain activities when Neurodevelopmental treatment (NDT) is used alone compare to NDT is combined with intradermal acupuncture (IDA) treatment, using functional infrared spectroscopy (fNIRS) Methods Three children less than 7 year-old with cerebral palsy were participated. On their first visit, only NDT was used. After a week, they were treated with both NDT and IDA. During the treatment, fNIRS was used to measure any changes in their brain activities. Results In first patient with NDT, oxyhemoglobin level was increased during Standing exercise and Gait training compared to resting state. When the patient was treated with NDT and IDA, oxyhemoglobin level was decreased during Standing exercise and Gait training compared to resting state, and the result was significant (p<0.05). In second patient, oxyhemoglobin level was decreased in Gait training compared to resting state when NDT was used, but the level was increased when NDT and IDA were used in Gait training compared to resting state (p<0.05). In third patient, the difference in oxyhemoglobin levels between Gait training and resting state was significant (p<0.05). Conclusions Treatment involving both NDT and IDA has more potential to improve brain activities compared to that of NDT alone, and no adverse effect was reported. In order to confirm the finding, larger scale randomized controlled trials are needed.