• Title/Summary/Keyword: Functional Division

Search Result 2,486, Processing Time 0.031 seconds

Microstructure and Properties of Yttria Film Prepared by Aerosol Deposition (에어로졸 데포지션에 의한 이트리아 필름의 미세구조와 특성)

  • Lee, Byung-Kuk;Park, Dong-Soo;Yoon, Woon-Ha;Ryu, Jung-Ho;Hahn, Byung-Dong;Choi, Jong-Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.441-446
    • /
    • 2009
  • Dense crack-free yttria film with 10 $\mu m$ thickness was prepared on aluminum by aerosol deposition. X-ray diffraction pattern on the film showed that it contained the same crystalline phase as the raw powder. Transmission electron microscopy revealed a nanostructured yttria film with grains smaller than 100 nm. Tensile adhesion strength between the film and aluminum substrate was 57.8 $\pm$ 6.3MPa. According to the etching test with $CF_4-O_2$ plasma, the etching rate of the yttria film was 1/100 that of quartz, 1/10 that of sintered alumina and comparable to that of sintered yttria.

Aroma Profiling of Sun-dried Salt by GC/MS Analysis (GS/MS 분석에 의한 천일염의 향기성분)

  • Na, Jong Min;Jin, Yong Xie;Kim, Se Na;Kim, Jung Bong;Kim, Haeng Ran;Cho, Young Suk;Yoon, Hyang Sik;Kim, So-Youn
    • The Korean Journal of Food And Nutrition
    • /
    • v.25 no.4
    • /
    • pp.1092-1098
    • /
    • 2012
  • Aroma compounds in sun-dried salt according to saltern material and packaging box were extracted by the headspace and were isolated by using GC-MS. These compounds were identified including ketones, heterocyclic compounds and six other compounds. Major aroma compounds in salts were identified as 4-methyl-2-pentanone, 5-methyl-3-hexanone, 4-methyl-3-penten-2-one, 2-hexanol, benzothiazole, 2,4-bis(1,1-dimethylethyl)-phenol, and 1,3,5-tri-tert-butyl benzene. However, we found no significant differences according to the saltern materials in three salts. Salts stored in Chamaceyparis obtusa (Sieb. et Zucc.) had more diverse aroma profiling than those in Pinus densiflora and Paulownia coreana. We consider that it need to research the development of high value added products for new aromatic salt.

Incorporation of Graphitic Porous Carbon for Synthesis of Composite Carbon Aerogel with Enhanced Electrochemical Performance

  • Singh, Ashish;Kohli, D.K.;Singh, Rashmi;Bhartiya, Sushmita;Singh, M.K.;Karnal, A.K.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.204-211
    • /
    • 2021
  • We report, synthesis of high surface area composite carbon aerogel using additive based polymerization technique by incorporating graphitic porous carbon as additive. This additive was separately prepared using sol-gel polymerization of resorcinol-furfuraldehyde in iso-propyl alcohol medium at much above the routine gelation temperature to yield porous carbon (CA-IPA) having graphitic layered morphology. CA-IPA exhibited a unique combination of meso-pore dominated surface area (~ 700 m2/g) and good conductivity of ~ 300 S/m. The composite carbon aerogel (CCA) was synthesized by traditional aqueous medium based resorcinol-formaldehyde gelation with CA-IPA as additive. The presence of CA-IPA favored enhanced meso-porosity as well as contributed to improvement in bulk conductivity. Based on the surface area characteristics, CCA-8 composition having 8% additive was found to be optimum. It showed specific surface area of ~ 2056 m2/g, mesopore area of 827 m2/g and electrical conductivity of 180 S/m. The electrode formed with CCA-8 showed improved electrochemical behavior, with specific capacitance of 148 F/g & ESR < 1 Ω, making it a better choice as super capacitor for energy storage applications.