• Title/Summary/Keyword: Functional Connectivity Pattern Analysis

Search Result 9, Processing Time 0.024 seconds

An Extensive Analysis of High-density Electroencephalogram during Semantic Decision of Visually Presented Words

  • Kim, Kyung-Hwan;Kim, Ja-Hyun
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.170-179
    • /
    • 2006
  • The purpose of this study was to investigate the spatiotemporal cortical activation pattern and functional connectivity during visual perception of words. 61 channel recordings of electroencephalogram were obtained from 15 subjects while they were judging the meaning of Korean, English, and Chinese words with concrete meanings. We examined event-related potentials (ERP) and applied independent component analysis (ICA) to find and separate simultaneously activated neural sources. Spectral analysis was also performed to investigate the gamma-band activity (GBA, 30-50 Hz) which is known to reflect feature binding. Five significant ERP components were identified and left hemispheric dominance was observed for most sites. Meaningful differences of amplitudes and latencies among languages were observed. It seemed that familiarity with each language and orthographic characteristics affected the characteristics of ERP components. ICA helped confirm several prominent sources corresponding to some ERP components. The results of spectral and time-frequency analyses showed distinct GBAs at prefrontal, frontal, and temporal sites. The GBAs at prefrontal and temporal sites were significantly correlated with the LPC amplitude and response time. The differences in spatiotemporal patterns of GBA among languages were not prominent compared to the inter-individual differences. The gamma-band coherence revealed short-range connectivity within frontal region and long-range connectivity between frontal, posterior, and temporal sites.

Interactivity within large-scale brain network recruited for retrieval of temporally organized events (시간적 일화기억인출에 관여하는 뇌기능연결성 연구)

  • Nah, Yoonjin;Lee, Jonghyun;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.29 no.3
    • /
    • pp.161-192
    • /
    • 2018
  • Retrieving temporal information of encoded events is one of the core control processes in episodic memory. Despite much prior neuroimaging research on episodic retrieval, little is known about how large-scale connectivity patterns are involved in the retrieval of sequentially organized episodes. Task-related functional connectivity multivariate pattern analysis was used to distinguish the different sequential retrieval. In this study, participants performed temporal episodic memory tasks in which they were required to retrieve the encoded items in either the forward or backward direction. While separately parsed local networks did not yield substantial efficiency in classification performance, the large-scale patterns of interactivity across the cortical and sub-cortical brain regions implicated in both the cognitive control of memory and goal-directed cognitive processes encompassing lateral and medial prefrontal regions, inferior parietal lobules, middle temporal gyrus, and caudate yielded high discriminative power in classification of temporal retrieval processes. These findings demonstrate that mnemonic control processes across cortical and subcortical regions are recruited to re-experience temporally-linked series of memoranda in episodic memory and are mirrored in the qualitatively distinct global network patterns of functional connectivity.

Brain Activation Pattern and Functional Connectivity during Convergence Thinking and Chemistry Problem Solving (융합 사고와 화학문제풀이 과정에서의 두뇌 활성 양상과 기능적 연결성)

  • Kwon, Seung-Hyuk;Oh, Jae-Young;Lee, Young-Ji;Eom, Jeung-Tae;Kwon, Yong-Ju
    • Journal of the Korean Chemical Society
    • /
    • v.60 no.3
    • /
    • pp.203-214
    • /
    • 2016
  • The purpose of this study was to investigate brain activation pattern and functional connectivity during convergence thinking based creative problem solving and chemistry problem solving to identify characteristic convergence thinking that is backbone of creative problem solving using functional magnetic resonance imaging(fMRI). A fMRI paradaigm inducing convergence thinking and chemistry problem solving was developed and adjusted on 17 highschool students, and brain activation image during task was analyzed. According to the results, superior frontal gyrus, middle frontal gyrus, inferior frontal gyrus, medial frontal gyrus, cingulate gyrus, precuneus and caudate nucleus body in left hemisphere and cuneus and caudate nucleus body in right hemisphere were significantly activated during convergence thinking. The other hand, middle frontal gyrus, medial frontal gyrus and caudate nucleus in left hemisphere and middle frontal gyrus, lingual gyrus, caudate nucleus, thalamus and culmen of cerebellum in right hemisphere were significantly activated during chemistry problem solving. As results of analysis functional connectivity, all of areas activated during convergence thinking were functionaly connected, whereas scanty connectivity of chemistry problem solving between right middle frontal gyrus, bilateral nucleus caudate tail and culmen. The results show that logical thinking, working memory, planning, imaging, languge based thinking and learning motivation were induced during convergence thinking and these functions and regions were synchronized intimately. Whereas, logical thinking and inducing learning motivation functioning during chemistry problem solving were not synchronized. These results provide concrete information about convergence thinking.

Determination of Emergency Evacuation Roads Considering Road Network Function and Connectivity (도로네트워크 기능 및 연결성을 고려한 긴급대피교통로 선정)

  • Noh, Yunseung;Do, Myungsik
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.34-42
    • /
    • 2014
  • This study is a fundamental research to determine the emergency evacuation roads considering road network function and connectivity. First of all, the functional aspects of the road networks are analyzed in the target area, Sejong city, by using degree centrality(DC) and closeness centrality(CC) from GIS based database. Secondly, how network connectivity makes a change in user's travel pattern and travel time and how it affects the whole network are analyzed using TransCAD simulation program. Finally, after performing cluster analysis of index, first and second emergency evacuation roads are determined by judging the characteristics of clusters. The results of this research will be helpful for making a decision to diminish secondary damages when confronting unexpected disasters.

An Analysis of Changes in Forest Fragmentation and Morphology in Surrounding Landscapes of Maeulsoops and Jinan-gun (진안군 마을숲 주변 산림의 파편화 및 공간 형태 변화 분석)

  • Kang, Wanmo;Koh, Insu;Park, Chan-Ryul;Lee, Dowon
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.6
    • /
    • pp.941-951
    • /
    • 2012
  • The changes of forest habitats and maeulsoops(village forests) in Jinan-gun, Jeollabuk-do, South Korea are examined using landscape indices and morphological pattern analysis, and their landscape-ecological implications on conserving biological diversity are presented. We used FRAGSTATS and GUIDOS software, as well as land cover maps(of 1989 and 2006) to analyze the spatial and temporal patterns of habitat composition and configuration in surrounding landscapes of 34 representative maeulsoops and Jinan-gun. The results showed decreases in the amount of core habitats and corridors and habitat connectivity at a regional scale since 1989. In addition, multi-scale habitat analysis at a focal scale revealed that the structural and functional connectivity between forest habitats surrounding maeulsoops of the year 2006 was lower than that of the year 1989. In order to reduce forest fragmentation and to enhance the connectivity among habitats, it is necessary to provide the additional habitat corridors as well as preserving existing corridors and surrounding landscapes of maeulsoops. We also suggest that a combination of landscape indices and morphological spatial pattern analysis can provide an effective tool to assess the habitat functions and configuration in a rapidly changing landscape.

Exploring the contextual factors of episodic memory: dissociating distinct social, behavioral, and intentional episodic encoding from spatio-temporal contexts based on medial temporal lobe-cortical networks (일화기억을 구성하는 맥락 요소에 대한 탐구: 시공간적 맥락과 구분되는 사회적, 행동적, 의도적 맥락의 내측두엽-대뇌피질 네트워크 특징을 중심으로)

  • Park, Jonghyun;Nah, Yoonjin;Yu, Sumin;Lee, Seung-Koo;Han, Sanghoon
    • Korean Journal of Cognitive Science
    • /
    • v.33 no.2
    • /
    • pp.109-133
    • /
    • 2022
  • Episodic memory consists of a core event and the associated contexts. Although the role of the hippocampus and its neighboring regions in contextual representations during encoding has become increasingly evident, it remains unclear how these regions handle various context-specific information other than spatio-temporal contexts. Using high-resolution functional MRI, we explored the patterns of the medial temporal lobe (MTL) and cortical regions' involvement during the encoding of various types of contextual information (i.e., journalism principle 5W1H): "Who did it?," "Why did it happen?," "What happened?," "When did it happen?," "Where did it happen?," and "How did it happen?" Participants answered six different contextual questions while looking at simple experimental events consisting of two faces with one object on the screen. The MTL was divided to sub-regions by hierarchical clustering from resting-state data. General linear model analyses revealed a stronger activation of MTL sub-regions, the prefrontal lobe (PFC), and the inferior parietal lobule (IPL) during social (Who), behavioral (How), and intentional (Why) contextual processing when compared with spatio-temporal (Where/When) contextual processing. To further investigate the functional networks involved in contextual encoding dissociation, a multivariate pattern analysis was conducted with features selected as the task-based connectivity links between the hippocampal subfields and PFC/IPL. Each social, behavioral, and intentional contextual processing was individually and successfully classified from spatio-temporal contextual processing, respectively. Thus, specific contexts in episodic memory, namely social, behavior, and intention, involve distinct functional connectivity patterns that are distinct from those for spatio-temporal contextual memory.

A research on EEG coherence variation by relaxation (이완에 따른 EEG 코히런스 변화에 대한 연구)

  • Kim, Jong-Hwa;Whang, Min-Cheol;Woo, Jin-Cheol;Kim, Chi-Joong;Kim, Young-Woo;Kim, Ji-Hye;Kim, Dong-Keun
    • Science of Emotion and Sensibility
    • /
    • v.13 no.1
    • /
    • pp.121-128
    • /
    • 2010
  • This study is to analyze change of connectivity between brain positions caused by relaxation through EEG coherence. EEG spectrum analysis method has been used to analyze brain activity when relaxation was experienced. However, the spectrum analysis method has a limit that could not observe interactive reaction between brain-functional positions. Therefore, coherence between positions was analyzed to observe connectivity between the measurement positions in this study. Through the method, the reaction of the central nervous system caused by the emotion change was observed. Twenty-four undergraduates of both genders(12 males and 12 females) were asked to close their eyes and listen to the sound. During experiment, EEG was measured at eight positions. The eight positions were F3, F4, T3, T4, P3, P4, O1, and O2 in accordance with International 10-20 system. The sounds with white noise and without were used for relaxation experience. Subjective emotion was measured to verify whether or not they felt relaxation. Subjective emotion of participants were analyzed by ANOVA method(Analysis of Variance). In the result, it was proved that relaxation was subjectively evoked when participants heard sound. Accordingly, it was proved that relaxation could be enhanced by the mixed white noise. EEG coherence between the measurement positions was analyzed. T-test was performed to find its significant difference between relaxation and not-relaxation. In the results of EEG coherence, connectivity with occipital lobes has been increased with relaxation, and connectivity with parietal lobes has been increased with non-relaxed state. Therefore, brain connectivity has shown different pattern between relaxed emotion and non-relaxed emotion.

  • PDF

Interactivity of Neural Representations for Perceiving Shared Social Memory

  • Ahn, Jeesung;Kim, Hye-young;Park, Jonghyun;Han, Sanghoon
    • Science of Emotion and Sensibility
    • /
    • v.21 no.3
    • /
    • pp.29-48
    • /
    • 2018
  • Although the concept of "common sense" is often taken for granted, judging whether behavior or knowledge is common sense requires a complex series of mental processes. Additionally, different perceptions of common sense can lead to social conflicts. Thus, it is important to understand how we perceive common sense and make relevant judgments. The present study investigated the dynamics of neural representations underlying judgments of what common sense is. During functional magnetic resonance imaging, participants indicated the extent to which they thought that a given sentence corresponded to common sense under the given perspective. We incorporated two different decision contexts involving different cultural perspectives to account for social variability of the judgments, an important feature of common sense judgments apart from logical true/false judgments. Our findings demonstrated that common sense versus non-common sense perceptions involve the amygdala and a brain network for episodic memory recollection, including the hippocampus, angular gyrus, posterior cingulate cortex, and ventromedial prefrontal cortex, suggesting integrated affective, mnemonic, and social functioning in common sense processing. Furthermore, functional connectivity multivariate pattern analysis revealed that interactivity among the amygdala, angular gyrus, and parahippocampal cortex reflected representational features of common sense perception and not those of non-common sense perception. Our study demonstrated that the social memory network is exclusively involved in processing common sense and not non-common sense. These results suggest that intergroup exclusion and misunderstanding can be reduced by experiencing and encoding long-term social memories about behavioral norms and knowledge that act as common sense of the outgroup.

Estimation of Road-Network Performance and Resilience According to the Strength of a Disaster (재난 강도에 따른 도로 네트워크의 성능 및 회복력 산정 방안)

  • Jung, Hoyong;Choi, Seunghyun;Do, Myungsik
    • International Journal of Highway Engineering
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2018
  • PURPOSES : This study examines the performance changes of road networks according to the strength of a disaster, and proposes a method for estimating the quantitative resilience according to the road-network performance changes and damage scale. This study also selected high-influence road sections, according to disasters targeting the road network, and aimed to analyze their hazard resilience from the network aspect through a scenario analysis of the damage recovery after a disaster occurred. METHODS : The analysis was conducted targeting Sejong City in South Korea. The disaster situation was set up using the TransCAD and VISSIM traffic-simulation software. First, the study analyzed how road-network damage changed the user's travel pattern and travel time, and how it affected the complete network. Secondly, the functional aspects of the road networks were analyzed using quantitative resilience. Finally, based on the road-network performance change and resilience, priority-management road sections were selected. RESULTS : According to the analysis results, when a road section has relatively low connectivity and low traffic, its effect on the complete network is insignificant. Moreover, certain road sections with relatively high importance can suffer a performance loss from major damage, for e.g., sections where bridges, tunnels, or underground roads are located, roads where no bypasses exist or they exist far from the concerned road, including entrances and exits to suburban areas. Relatively important roads have the potential to significantly degrade the network performance when a disaster occurs. Because of the high risk of delays or isolation, they may lead to secondary damage. Thus, it is necessary to manage the roads to maintain their performance. CONCLUSIONS : As a baseline study to establish measures for traffic prevention, this study considered the performance of a road network, selected high-influence road sections within the road network, and analyzed the quantitative resilience of the road network according to scenarios. The road users' passage-pattern changes were analyzed through simulation analysis using the User Equilibrium model. Based on the analysis results, the resilience in each scenario was examined and compared. Sections where a road's performance loss had a significant influence on the network were targeted. The study results were judged to become basic research data for establishing response plans to restore the original functions and performance of the destroyed and damage road networks, and for selecting maintenance priorities.