A research on EEG coherence variation by relaxation

이완에 따른 EEG 코히런스 변화에 대한 연구

  • Kim, Jong-Hwa (Department of Emotion Engineering, Sangmyung Graduate School) ;
  • Whang, Min-Cheol (Department of Emotion Engineering, Sangmyung Graduate School) ;
  • Woo, Jin-Cheol (Department of Computer Science, Sangmyung Graduate School) ;
  • Kim, Chi-Joong (Department of Computer Science, Sangmyung Graduate School) ;
  • Kim, Young-Woo (Department of Computer Science, Sangmyung Graduate School) ;
  • Kim, Ji-Hye (Department of Computer Science, Sangmyung Graduate School) ;
  • Kim, Dong-Keun (Division of Digital Media Technology, Sangmyung Univercity)
  • 김종화 (상명대학교 일반대학원 감성공학과) ;
  • 황민철 (상명대학교 일반대학원 감성공학과) ;
  • 우진철 (상명대학교 일반대학원 컴퓨터과학과) ;
  • 김치중 (상명대학교 일반대학원 컴퓨터과학과) ;
  • 김용우 (상명대학교 일반대학원 컴퓨터과학과) ;
  • 김지혜 (상명대학교 일반대학원 컴퓨터과학과) ;
  • 김동근 (상명대학교 소프트웨어대학 디지털미디어학부)
  • Received : 2010.01.11
  • Accepted : 2010.03.16
  • Published : 2010.03.31

Abstract

This study is to analyze change of connectivity between brain positions caused by relaxation through EEG coherence. EEG spectrum analysis method has been used to analyze brain activity when relaxation was experienced. However, the spectrum analysis method has a limit that could not observe interactive reaction between brain-functional positions. Therefore, coherence between positions was analyzed to observe connectivity between the measurement positions in this study. Through the method, the reaction of the central nervous system caused by the emotion change was observed. Twenty-four undergraduates of both genders(12 males and 12 females) were asked to close their eyes and listen to the sound. During experiment, EEG was measured at eight positions. The eight positions were F3, F4, T3, T4, P3, P4, O1, and O2 in accordance with International 10-20 system. The sounds with white noise and without were used for relaxation experience. Subjective emotion was measured to verify whether or not they felt relaxation. Subjective emotion of participants were analyzed by ANOVA method(Analysis of Variance). In the result, it was proved that relaxation was subjectively evoked when participants heard sound. Accordingly, it was proved that relaxation could be enhanced by the mixed white noise. EEG coherence between the measurement positions was analyzed. T-test was performed to find its significant difference between relaxation and not-relaxation. In the results of EEG coherence, connectivity with occipital lobes has been increased with relaxation, and connectivity with parietal lobes has been increased with non-relaxed state. Therefore, brain connectivity has shown different pattern between relaxed emotion and non-relaxed emotion.

본 연구는 이완에 따른 뇌 영역간의 연결성을 코히런스 분석방법으로 확인하고자 한다. 기존의 이완유발에 따른 뇌 활동 변화는 EEG 스펙트럼 분석방법을 사용하여왔다. 하지만 스펙트럼 분석방법으로는 측정영역에서의 반응만을 관찰할 수 있고, 뇌 영역간의 연결성을 분석하기는 힘들다. 따라서 측정점 사이의 연결성을 관찰할 수 있는 코히런스 분석방법으로 이완에 따른 뇌 영역 간의 연결성을 확인하였다. 이를 통해 감성 변화에 따른 중추신경계의 변화를 관찰할 수 있었다. 실험은 24명의 대학생을 대상으로 눈을 감고 이완음향을 듣도록 지시하고 8개의 위치에서 EEG를 측정하였다. EEG측정위치는 국제적인 10-20법에 의거한 F3, F4, T3, T4, P3, P4, O1, 그리고 O2지점을 사용하였다. 실험에 사용된 음향은 White noise를 혼합한 음향과 혼합하지 않은 음향을 사용하였다. 그리고 실제로 이완이 되었는지 확인하기 위해 주관적 감성을 함께 측정하였다. 주관적 감성 응답은 ANOVA(Analysis of Variance)하였다. 음향을 들었을 때 실제로 이완효과가 발생하며, White noise가 이완을 증가시키는 것을 확인하였다. EEG는 측정영역 사이의 코히런스를 측정하였다. 그리고 White noise를 혼합한 음향과 혼합하지 않은 음향을 들었을 때의 코히런스 결과를 t-test하여 유의성을 확인하였다. 분석결과 White noise를 혼합한 음향에서 후두엽과의 연결성이 증가하였고, White noise를 혼합하지 않은 음향에서는 두정엽과의 연결성이 증가하는 결과를 확인하였다. 이를 통해 이완일 때의 뇌 기능 연결성의 변화를 관찰할 수 있는 중요한 결과를 도출하였다.

Keywords

References

  1. 김영주, 황민철, 강희 (2008). EEG와 EMG의 coherence을 이용한 BCI 연구. 대한인간공학회지 27(2), 9-14.
  2. 김영주, 황민철, 강희, 김종화 (2007). 동작에 의한 EMG와 EEG의 coherence 연구. 대한인간공학회 추계 학술대회, 55-59.
  3. 김종화, 황민철, 우진철, 김종서, 최원민, 윤중삼, 황병철 (2009). 음향효과를 위한 White noise의 마스킹(Masking)이 이완에 미치는 영향 관한 연구. HCI 학회 학술대회.
  4. 김종화, 황민철, 우진철, 김종서, 최원민, 윤중삼, 황병철 (2008). White noise를 혼합한 음향의 이완효과에 관한 연구. 2008 추계 통합 감성 국제학술대회.
  5. 우진철, 황민철, 김영주, 김종화 (2008). EEG의 편측성 coherence를 이용한 손동작 예측 기술. 대한인간공학회 춘계 학술대회, 202-205.
  6. Baker, S.N., Olivier, E. & Lemon, R.N. (1997). Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation. The Journal of Physiology 501, 225-241. https://doi.org/10.1111/j.1469-7793.1997.225bo.x
  7. Barry, R., Clarke, A., Johnstone, S., Magee, C., & Rushby, J. (2007). EEG differences between eyes-closed and eyes-open resting conditions, Clinical Neuro-physiology, Volume 118, Issue 12, 2765-2773.
  8. Combs, L.A. & Polich, J. (2006). P3a from auditory white noise stimuli. Clinical Neurophysiology 117(5), 1106-1112. https://doi.org/10.1016/j.clinph.2006.01.023
  9. Grosse, P., Cassidy, M.J., & Brown, P. (2002). EEG-EMG, MEG-EMG and EMG-EMG frequency analysis: physiological principles and clinical applications. Clinical Neurophysiology 113, 1523-1531. https://doi.org/10.1016/S1388-2457(02)00223-7
  10. Hall, E.E., Ekkekakis, P., & Petruzzello, S.J. (2007). Regional brain activity and strenuous exercise: Predicting affective responses using EEG asymmetry. Biological Psychology 75(2), 194-200. https://doi.org/10.1016/j.biopsycho.2007.03.002
  11. Isotani, T., Tanaka, H., Lehmann, D., Pascual-Marqui, R.D., Kochi, K., Saito, N., Yagyu, T., Kinoshita, T. & Sasada, K. (2001). Source localization of EEG activity during hypnotically induced anxiety and relaxation. International Journal of Psychophysiology 41, 143-153. https://doi.org/10.1016/S0167-8760(00)00197-5
  12. Jausovec, N. (1996). Differences in EEG alpha activity related to giftedness. Intelligence 23, 159-173. https://doi.org/10.1016/S0160-2896(96)90001-X
  13. Knott, V., Bakish, D., Lusk, S., & Barkely, J. (1997). Relaxation-induced EEG alterations in panic disorder patients. Journal of Anxiety Disorders 11, 365-376. https://doi.org/10.1016/S0887-6185(97)00016-9
  14. Moore, R. A., Gale, A., Morris, P.H., & Forrester, D. (2008). Alpha power and coherence primarily reflect neural activity related to stages of motor response during a continuous monitoring task, International Journal of Psychophysiology, 69, 79-89. https://doi.org/10.1016/j.ijpsycho.2008.03.003
  15. Passynkova, N.R. & Volf, N.V. (2001). Seasonal affective disorder: spatial organization of EEG power and coherence in the depressive state and in light-induced and summer remission. Psychiatry Research: Neuroimaging 108(3), 169-185. https://doi.org/10.1016/S0925-4927(01)00122-6
  16. Rosenberg, J.R., Amjad, A.M., Breeze, P., Brillinger, D.R., & Halliday, D.M. (1989). The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress in Biophysics and Molecular Biology 53, 1-31. https://doi.org/10.1016/0079-6107(89)90004-7
  17. Ruchkin, D. (2005). EEG coherence, International Journal of Psychophysiology, 57, 83-85. https://doi.org/10.1016/j.ijpsycho.2005.04.001
  18. Salenius, S., Salmelin, R., Neuper, C., Pfurtscheller, G. & Hari, R. (1996). Human cortical 40 Hz rhythm is closely related to EMG rhythmicity. Neuroscience Letters 213, 75-78. https://doi.org/10.1016/0304-3940(96)12796-8
  19. Schmidt, L.A. & Trainor, L.J. (2001). Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions. Cognition & Emotion 15(4), 487-500. https://doi.org/10.1080/02699930126048
  20. Takahashi, T., Murata, T., Hamada, T., Omori, M., Kosaka, H., Kikuchi, M., Yoshida, H., & Wada, Y. (2005). Changes in EEG and autonomic nervous activity during meditation and their association with personality traits. International Journal of Psychophysiology 55, 199-207. https://doi.org/10.1016/j.ijpsycho.2004.07.004
  21. Teplan, M., Krakovska, A., & Stolc, S. (2006a). EEG responses to long-term audio-visual stimulation. International Journal of Psychophysiology 59, 81-90. https://doi.org/10.1016/j.ijpsycho.2005.02.005
  22. Teplan, M., A. Krakovska, & S. Stolc(2006b). Short-term effects of audio-visual stimulation on EEG. Measurement science review 6(2), 67-70.
  23. Travis, F., Tecce, Joe, Arenander, Alarik & Wallace, R. Keith(2002). Patterns of EEG coherence, power, and contingent negative variation characterize the integration of transcendental and waking states. Biological Psychology 61(3), 293-319. https://doi.org/10.1016/S0301-0511(02)00048-0