Browse > Article
http://dx.doi.org/10.14695/KJSOS.2018.21.3.29

Interactivity of Neural Representations for Perceiving Shared Social Memory  

Ahn, Jeesung (Graduate Program in Cognitive Science, Yonsei University)
Kim, Hye-young (Booth School of Business, University of Chicago)
Park, Jonghyun (Department of Psychology, Yonsei University)
Han, Sanghoon (Graduate Program in Cognitive Science, Yonsei University)
Publication Information
Science of Emotion and Sensibility / v.21, no.3, 2018 , pp. 29-48 More about this Journal
Abstract
Although the concept of "common sense" is often taken for granted, judging whether behavior or knowledge is common sense requires a complex series of mental processes. Additionally, different perceptions of common sense can lead to social conflicts. Thus, it is important to understand how we perceive common sense and make relevant judgments. The present study investigated the dynamics of neural representations underlying judgments of what common sense is. During functional magnetic resonance imaging, participants indicated the extent to which they thought that a given sentence corresponded to common sense under the given perspective. We incorporated two different decision contexts involving different cultural perspectives to account for social variability of the judgments, an important feature of common sense judgments apart from logical true/false judgments. Our findings demonstrated that common sense versus non-common sense perceptions involve the amygdala and a brain network for episodic memory recollection, including the hippocampus, angular gyrus, posterior cingulate cortex, and ventromedial prefrontal cortex, suggesting integrated affective, mnemonic, and social functioning in common sense processing. Furthermore, functional connectivity multivariate pattern analysis revealed that interactivity among the amygdala, angular gyrus, and parahippocampal cortex reflected representational features of common sense perception and not those of non-common sense perception. Our study demonstrated that the social memory network is exclusively involved in processing common sense and not non-common sense. These results suggest that intergroup exclusion and misunderstanding can be reduced by experiencing and encoding long-term social memories about behavioral norms and knowledge that act as common sense of the outgroup.
Keywords
Common Sense; Neuroimaging; fcMVPA; Amygdala; MTL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chan, D., Fox, N. C., Scahill, R. I., Crum, W. R., Whitwell, J. L., Leschziner, G., ... Rossor, M. N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Annals of Neurology, 49(4), 433-442. DOI: 10.1002/ana.92   DOI
2 Cunningham, W. A., Van Bavel, J. J., & Johnsen, I. R. (2008). Affective flexibility: evaluative processing goals shape amygdala activity. Psychological Science, 19(2), 152-160. DOI: 10.1111/j.1467-9280.2008.02061.x   DOI
3 Raine, A., & Yang, Y. (2006). Neural foundations to moral reasoning and antisocial behavior. Social Cognitive and Affective Neuroscience, 1(3), 203-213. DOI: 10.1093/scan/nsl033   DOI
4 Richardson, M. P., Strange, B. A., & Dolan, R. J. (2004). Encoding of emotional memories depends on amygdala and hippocampus and their interactions. Nature Neuroscience, 7(3), 278-285. DOI: 10.1038/nn1190   DOI
5 Rosenfeld, S. A. (2011). Common Sense: Harvard University Press.
6 Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059-1069. DOI: 10.1016/j.neuroimage.2009.10.003   DOI
7 Rugg, M. D., & Vilberg, K. L. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23(2), 255-260. DOI: 10.1016/j.conb.2012.11.005   DOI
8 Rule, N. O., Freeman, J. B., Moran, J. M., Gabrieli, J. D., Adams Jr, R. B., & Ambady, N. (2009). Voting behavior is reflected in amygdala response across cultures. Social Cognitive and Affective Neuroscience, 5(2-3), 349-355. DOI: 10.1093/scan/nsp046   DOI
9 Sander, D., Grafman, J., & Zalla, T. (2003). The human amygdala: an evolved system for relevance detection. Reviews in the Neurosciences, 14(4), 303-316. DOI: 10.1515/REVNEURO.2003.14.4.303   DOI
10 Schiller, D., Freeman, J. B., Mitchell, J. P., Uleman, J. S., & Phelps, E. A. (2009). A neural mechanism of first impressions. Nature Neuroscience, 12(4), 508-514. DOI: 10.1038/nn.2278   DOI
11 LaBar, K. S., & Cabeza, R. (2006). Cognitive neuroscience of emotional memory. Nature Reviews Neuroscience, 7(1), 54-64. DOI: 10.1038/nrn1825   DOI
12 Hutchinson, J. B., Uncapher, M. R., & Wagner, A. D. (2009). Posterior parietal cortex and episodic retrieval: convergent and divergent effects of attention and memory. Learning & Memory, 16(6), 343-356. DOI: 10.1101/lm.919109   DOI
13 Knutson, K. M., Wood, J. N., Spampinato, M. V., & Grafman, J. (2006). Politics on the brain: an FMRI investigation. Social Neuroscience, 1(1), 25-40. DOI: 10.1080/17470910600670603   DOI
14 Kruschwitz, J., List, D., Waller, L., Rubinov, M., & Walter, H. (2015). GraphVar: A user-friendly toolbox for comprehensive graph analyses of functional brain connectivity. Journal of Neuroscience Methods, 245, 107-115. DOI: 10.1016/j.jneumeth.2015.02.021   DOI
15 Diedrichsen, J., & Shadmehr, R. (2005). Detecting and adjusting for artifacts in fMRI time series data. Neuroimage, 27(3), 624-634. DOI: 10.1016/j.neuroimage.2005.04.039   DOI
16 Simonite, T. (2015a). Facebook's Artificial-Intelligence Software Gets a Dash More Common Sense. Retrieved from https://www.technologyreview.com/s/543116/facebooks-artificial-intelligence-softwaregets-a-dash-more-common-sense/
17 Simonite, T. (2015b). Teaching Machines to Understand Us MIT Technology Review.
18 Daselaar, S. M., Prince, S. E., Dennis, N. A., Hayes, S. M., Kim, H., & Cabeza, R. (2009). Posterior midline and ventral parietal activity is associated with retrieval success and encoding failure. Frontiers in Human Neuroscience, 3, 13. DOI: 10.3389/neuro.09.013.2009
19 De Marzio, D. M. (2010). Dealing with Diversity: On the Uses of Common Sense in Descartes and Montaigne. Studies in Philosophy and Education, 29(3), 301-313. DOI: 10.1007/s11217-010-9179-6   DOI
20 Desmond, J. E., & Glover, G. H. (2002). Estimating sample size in functional MRI (fMRI) neuroimaging studies: statistical power analyses. Journal of Neuroscience Methods, 118(2), 115-128. DOI: 10.1016/S0165-0270(02)00121-8   DOI
21 Duarte, A., Henson, R. N., & Graham, K. S. (2011). Stimulus content and the neural correlates of source memory. Brain Research, 1373, 110-123. DOI: 10.1016/j.brainres.2010.11.086   DOI
22 Okuyama, T., Kitamura, T., Roy, D. S., Itohara, S., & Tonegawa, S. (2016). Ventral CA1 neurons store social memory. Science, 353(6307), 1536-1541. DOI: 10.1126/science.aaf7003   DOI
23 Loughead, J., Gur, R. C., Elliott, M., & Gur, R. E. (2008). Neural circuitry for accurate identification of facial emotions. Brain Research, 1194, 37-44. DOI: 10.1016/j.brainres.2007.10.105   DOI
24 McCormick, C., Moscovitch, M., Protzner, A. B., Huber, C. G. & McAndrews, M. P. (2010). Hippocampalneocortical networks differ during encoding and retrieval of relational memory: functional and effective connectivity analyses. Neuropsychologia, 48(11), 3272-3281. DOI: 10.1016/j.neuropsychologia.2010.07.010   DOI
25 O'Toole, A. J., Jiang, F., Abdi, H., Penard, N., Dunlop, J. P., & Parent, M. A. (2007). Theoretical, statistical, and practical perspectives on pattern-based classification approaches to the analysis of functional neuroimaging data. Journal of Cognitive Neuroscience, 19(11), 1735-1752. DOI: 10.1162/jocn.2007.19.11.1735   DOI
26 Fletcher, P. C., Frith, C. D., Baker, S. C., Shallice, T., Frackowiak, R. S., & Dolan, R. J. (1995). The mind's eye--precuneus activation in memory-related imagery. Neuroimage, 2(3), 195-200. DOI: 10.1006/nimg.1995.1025   DOI
27 Edelson, M., Sharot, T., Dolan, R. J., & Dudai, Y. (2011). Following the crowd: brain substrates of long-term memory conformity. Science, 333(6038), 108-111. DOI: 10.1126/science.1203557   DOI
28 Eichenbaum, H., Dudchenko, P., Wood, E., Shapiro, M., & Tanila, H. (1999). The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron, 23(2), 209-226. DOI: 10.1016/S0896-6273(00)80773-4   DOI
29 Ewbank, M. P., Barnard, P. J., Croucher, C. J., Ramponi, C., & Calder, A. J. (2009). The amygdala response to images with impact. Social Cognitive and Affective Neuroscience, 4(2), 127-133. DOI: 10.1093/scan/nsn048   DOI
30 Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. R. (1995). Fear and the human amygdala. Journal of Neuroscience, 15(9), 5879-5891. DOI: 10.1523/JNEUROSCI.15-09-05879.1995   DOI
31 Aggleton, J. P. (2012). Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neuroscience and Biobehavioral Reviews, 36(7), 1579-1596. DOI: 10.1016/j.neubiorev.2011.09.005   DOI
32 Berryhill, M. E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I. R. (2007). Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. Journal of Neuroscience, 27(52), 14415-14423. DOI: 10.1523/JNEUROSCI.4163-07.2007   DOI
33 Bicchieri, C. (2005). The grammar of society: The nature and dynamics of social norms: Cambridge University Press.
34 Vanderwal, T., Hunyadi, E., Grupe, D. W., Connors, C. M., & Schultz, R. T. (2008). Self, mother and abstract other: an fMRI study of reflective social processing. Neuroimage, 41(4), 1437-1446. DOI: 10.1016/j.neuroimage.2008.03.058   DOI
35 Slotnick, S. D., Moo, L. R., Segal, J. B., & Hart, J., Jr. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17(1), 75-82. DOI: 10.1016/S0926-6410(03)00082-X   DOI
36 Snir, I. (2015). Experts Of Common Sense: Philosophers, Laypeople And Democratic Politics. Humana Mente-Journal of Philosophical Studies (28), 187-210. Retrieved from http://www.humanamente.eu/index.php/HM/article/view/87
37 Stangor, C., Jhangiani, R., & Hammond, T. (2014). Principles of social psychology: BC Campus.
38 Zerubavel, N., Bearman, P. S., Weber, J., & Ochsner, K. N. (2015). Neural mechanisms tracking popularity in real-world social networks. Proceedings of the National Academy of Sciences, 112(49), 15072-15077. DOI: 10.1073/pnas.1511477112   DOI
39 Freeman, L. C. (1977). A set of measures of centrality based on betweenness. Sociometry, 35-41. DOI: 10.2307/3033543   DOI
40 Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: a functional imaging study of "theory of mind" in story comprehension. Cognition, 57(2), 109-128. DOI: 10.1016/0010-0277(95)00692-R   DOI
41 French, S. A. (1995). What is social memory? Southern Cultures, 2(1), 9-18. DOI: 10.1353/scu.1995.0049   DOI
42 Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198-202. DOI: 10.1016/j.conb.2004.03.015   DOI
43 Olick, J. K., & Robbins, J. (1998). Social memory studies: From "collective memory" to the historical sociology of mnemonic practices. Annual Review of Sociology, 24(1), 105-140.   DOI
44 Pajula, J., & Tohka, J. (2016). How many is enough? Effect of sample size in inter-subject correlation analysis of fMRI. Computational Intelligence and Neuroscience, 2016, 2. DOI: 10.1155/2016/2094601
45 Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012a). Cortical functional connectivity decodes subconscious, task-irrelevant threat-related emotion processing. Neuroimage, 61(4), 1355-1363. DOI: 10.1016/j.neuroimage.2012.03.051   DOI
46 Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012b). Decoding unattended fearful faces with whole-brain correlations: an approach to identify condition-dependent large-scale functional connectivity. PLoS Computational Biology, 8(3), e1002441. DOI: 10.1371/journal.pcbi.1002441   DOI
47 Pantazatos, S. P., Talati, A., Schneier, F. R., & Hirsch, J. (2014). Reduced anterior temporal and hippocampal functional connectivity during face processing discriminates individuals with social anxiety disorder from healthy controls and panic disorder, and increases following treatment. Neuropsychopharmacology, 39(2), 425-434. DOI: 10.1038/npp.2013.211   DOI
48 Phillips, R. G., & LeDoux, J. E. (1992). Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behavioral Neuroscience, 106(2), 274-285. DOI: 10.1037/0735-7044.106.2.274   DOI
49 Prince, S. E., Daselaar, S. M., & Cabeza, R. (2005). Neural correlates of relational memory: successful encoding and retrieval of semantic and perceptual associations. Journal of Neuroscience, 25(5), 1203-1210. DOI: 10.1523/JNEUROSCI.2540-04.2005   DOI
50 Blair, R. J. (2007). The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends in Cognitive Sciences, 11(9), 387-392. DOI: 10.1016/j.tics.2007.07.003   DOI
51 Burianova, H., McIntosh, A. R., & Grady, C. L. (2010). A common functional brain network for autobiographical, episodic, and semantic memory retrieval. Neuroimage, 49(1), 865-874. DOI: 10.1016/j.neuroimage.2009.08.066   DOI
52 Cabeza, R., Mazuz, Y. S., Stokes, J., Kragel, J. E., Woldorff, M. G., Ciaramelli, E., ... Moscovitch, M. (2011). Overlapping parietal activity in memory and perception: evidence for the attention to memory model. Journal of Cognitive Neuroscience, 23(11), 3209-3217. DOI: 10.1162/jocn_a_00065   DOI
53 Cabeza, R., Prince, S. E., Daselaar, S. M., Greenberg, D. L., Budde, M., Dolcos, F., ... Rubin, D. C. (2004a). Brain activity during episodic retrieval of autobiographical and laboratory events: An fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16(9), 1583-1594. DOI: 10.1162/0898929042568578   DOI
54 Cabeza, R., Prince, S. E., Daselaar, S. M., Greenberg, D. L., Budde, M., Dolcos, F., ... Rubin, D. C. (2004b). Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16(9), 1583-1594. DOI: 10.1162/0898929042568578   DOI
55 Cabeza, R., & St Jacques, P. (2007). Functional neuroimaging of autobiographical memory. Trends in Cognitive Sciences, 11(5), 219-227. DOI: 10.1016/j.tics.2007.02.005   DOI
56 Greene, J., & Haidt, J. (2002). How (and where) does moral judgment work? Trends in Cognitive Sciences, 6(12), 517-523. DOI: 10.1016/S1364-6613(02)02011-9   DOI
57 Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. Neuroimage, 6(3), 218-229. DOI: 10.1006/nimg.1997.0291   DOI
58 Frith, U., & Frith, C. (2001). The biological basis of social interaction. Current Directions in Psychological Science, 10(5), 151-155. DOI: 10.1111/1467-8721.00137   DOI
59 Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of 'theory of mind'in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11-21. DOI: 10.1016/S0028-3932(99)00053-6   DOI
60 Hayama, H. R., Vilberg, K. L., & Rugg, M. D. (2012). Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? Journal of Cognitive Neuroscience, 24(5), 1127-1137. DOI: 10.1162/jocn_a_00202   DOI
61 Haynes, J.-D., & Rees, G. (2006). Neuroimaging: decoding mental states from brain activity in humans. Nature Reviews Neuroscience, 7(7), 523. DOI: 10.1038/nrn1931   DOI
62 Hitti, F. L., & Siegelbaum, S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature, 508(7494), 88-+. DOI: 10.1038/nature13028   DOI