• 제목/요약/키워드: Function Point Method

검색결과 1,523건 처리시간 0.031초

목표 및 시나리오 기반 요구사항을 이용한 기능점수 분석 (Function Point Analysis using Goal and Scenario based Requirements)

  • 최순황;김진태;박수용;한지영
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제33권8호
    • /
    • pp.655-667
    • /
    • 2006
  • 본 논문은 목표 및 시나리오 기반의 요구사항을 이용하여 기능점수 (function point)를 산정하는 방법을 제안한다. 기능점수는 소프트웨어의 규모를 계산하는 방법으로 널리 사용되고 있으며 비용계산의 기본자료가 된다. 기능접수를 산정하기 위해서는 요구사항 도출 및 분석이 선행되어야 하나 기존의 기능점수 방법론은 이를 다루지 않고 있다. 한편 시스템 개발의 초기단계에서 대부분의 요구사항은 자연어 형태로 수집된다. 목표와 시나리오 방법론은 자연어 형태의 요구사항을 사용하여 요구사항을 도출하고 분석하는 방법으로 널리 사용되고 있으며 추적성에 대한 장점을 가지고 있다. 그러므로 목표 및 시나리오 기반의 요구사항으로부터 기능점수를 산정 할 수 있다면 요구사항과 기능접수 간의 추적성 관리가 쉬워진다. 이에 본 논문에서는 목표와 시나리오 기반의 요구사항으로부터 기능점수를 산정하는 방안을 제안한다. 제안된 방안은 자연어 형태로 기술된 목표 및 시나리오로부터 기능접수 분석에 필요한 규칙을 제공한다. 제안된 방안은 Order Processing System 예제를 통해 적용 방안을 설명한다.

국내 소프트웨어 개발사업에 적합한 기능점수규모 예측방법에 관한 연구 (A Study on Estimating Function Point Count of Domestic Software Development Projects)

  • 박찬규;신수정;이현옥
    • 경영과학
    • /
    • 제20권2호
    • /
    • pp.179-196
    • /
    • 2003
  • Function point model is the international standard method to measure the software size which is one of the most important factors to determine the software development cost. Function point model can successfully be applied only when the detailed specification of users' requirements is available. In the domestic public sector, however, the budgeting for software projects is carried out before the requirements of softwares ere specified in detail. Therefore, an efficient function point estimation method is required to apply function point model at the early stage of software development projects. The purpose of this paper is to compare various function point estimation methods and analyse their accuracies in domestic software projects. We consider four methods : NESMA model, ISBSG model, the simplified function point model and the backfiring method. The methods are applied to about one hundred of domestic projects, and their estimation errors are compared. The results can used as a criterion to select an adequate estimation model for function point counts.

요구사항으로부터 기능점수를 측정하기 위한 체계적인 방법 (A Systematical Method or Counting Function Point From Requirements)

  • 양원석;박수용;최순황;정창해;황만수
    • 시스템엔지니어링워크숍
    • /
    • 통권4호
    • /
    • pp.182-187
    • /
    • 2004
  • Our research proposes how to, systematically, count function point from initial functional requirements based on natural language. Gradually, Function Point Analysis is used to overcome the limitation of LOC(Line Of Code) for estimating software size. Moreover, it plays an important role in cost management. Function point is derived from initial requirements and is determined by experts who have an education for function point. However, currently there are few researches to cout function point by systematic or automatic rules. Through extending our porposed method, we expect that function point is able to be counted automatically or semi-automatically. This would be our future research

  • PDF

기능 점수를 이용한 소프트웨어 규모 및 비용산정 방안에 관한 연구 (An improvement of software sizing and cost estimation model with function point methods)

  • 김현수
    • 경영과학
    • /
    • 제14권1호
    • /
    • pp.131-149
    • /
    • 1997
  • Software cost estimation is an important both for buyers and sellers(developers). We reviewed domestic and foreign researches and practices on software cost estimation with function point method comprehensively, In this paper, we derived four promising alternative function point models. They are an IFPUG(International Function Point User Group)-based model(Model I), a shorthand model for client/sever software systems(Model II), a data-oricnted model for relatively large software projects(Model III), and a general- purpose function point model for non business application softwares as well as business applications(Model IV). Empirical data shows that Model I, II, and IV are very useful function point models. In particular, model II and IV look very useful models since they are concise and accurate. These models can be incorporated in a new improved guideline for software cost estimation. General opinion survey shows that Model I, II and IV are preferable. There are no significant differences in preference between buyers and sellers. The survey also shows that users think function point method is better than step(line of code)-oriented cost estimation methods in many ways including objectivity and estimation accuracy.

  • PDF

개선된 이점 대각 이차 근사화를 이용한 함수 근사화 (Function Approximation Using an Enhanced Two-Point Diagonal Quadratic Approximation)

  • 김종립;강우진;최동훈
    • 대한기계학회논문집A
    • /
    • 제28권4호
    • /
    • pp.475-480
    • /
    • 2004
  • Function approximation is one of the most important and active research fields in design optimization. Accurate function approximations can reduce the repetitive computational effort fur system analysis. So this study presents an enhanced two-point diagonal quadratic approximation method. The proposed method is based on the Two-point Diagonal Quadratic Approximation method. But unlike TDQA, the suggested method has two quadratic terms, the diagonal term and the correction term. Therefore this method overcomes the disadvantage of TDQA when the derivatives of two design points are same signed values. And in the proposed method, both the approximate function and derivative values at two design points are equal to the exact counterparts whether the signs of derivatives at two design points are the same or not. Several numerical examples are presented to show the merits of the proposed method compared to the other forms used in the literature.

확장된 고정점이론을 이용한 비선형시스템의 근을 구하는 방법 (A New Method of Finding Real Roots of Nonlinear System Using Extended Fixed Point Iterations)

  • 김성수;김지수
    • 전기학회논문지
    • /
    • 제67권2호
    • /
    • pp.277-284
    • /
    • 2018
  • In this paper, a new numerical method of finding the roots of a nonlinear system is proposed, which extends the conventional fixed point iterative method by relaxing the constraints on it. The proposed method determines the real valued roots and expands the convergence region by relaxing the constraints on the conventional fixed point iterative method, which transforms the diverging root searching iterations into the converging iterations by employing the metric induced by the geometrical characteristics of a polynomial. A metric is set to measure the distance between a point of a real-valued function and its corresponding image point of its inverse function. The proposed scheme provides the convenience in finding not only the real roots of polynomials but also the roots of the nonlinear systems in the various application areas of science and engineering.

AN ELIGIBLE PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi;Lee, Yong-Hoon
    • East Asian mathematical journal
    • /
    • 제29권3호
    • /
    • pp.279-292
    • /
    • 2013
  • It is well known that each kernel function defines a primal-dual interior-point method(IPM). Most of polynomial-time interior-point algorithms for linear optimization(LO) are based on the logarithmic kernel function([2, 11]). In this paper we define a new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has ${\mathcal{O}}((log\;p){\sqrt{n}}\;log\;n\;log\;{\frac{n}{\epsilon}})$ and ${\mathcal{O}}((q\;log\;p)^{\frac{3}{2}}{\sqrt{n}}\;log\;{\frac{n}{\epsilon}})$ iteration bound for large- and small-update methods, respectively. These are currently the best known complexity results.

AN ELIGIBLE KERNEL BASED PRIMAL-DUAL INTERIOR-POINT METHOD FOR LINEAR OPTIMIZATION

  • Cho, Gyeong-Mi
    • 호남수학학술지
    • /
    • 제35권2호
    • /
    • pp.235-249
    • /
    • 2013
  • It is well known that each kernel function defines primal-dual interior-point method (IPM). Most of polynomial-time interior-point algorithms for linear optimization (LO) are based on the logarithmic kernel function ([9]). In this paper we define new eligible kernel function and propose a new search direction and proximity function based on this function for LO problems. We show that the new algorithm has $\mathcal{O}(({\log}\;p)^{\frac{5}{2}}\sqrt{n}{\log}\;n\;{\log}\frac{n}{\epsilon})$ and $\mathcal{O}(q^{\frac{3}{2}}({\log}\;p)^3\sqrt{n}{\log}\;\frac{n}{\epsilon})$ iteration complexity for large- and small-update methods, respectively. These are currently the best known complexity results for such methods.

이방성 재료의 소성변형 해석을 위한 고정점 축차 (Fixed-point Iteration for the Plastic Deformation Analysis of Anisotropic Materials)

  • 양승용;김정한
    • 한국분말재료학회지
    • /
    • 제30권1호
    • /
    • pp.29-34
    • /
    • 2023
  • A fixed-point iteration is proposed to integrate the stress and state variables in the incremental analysis of plastic deformation. The Conventional Newton-Raphson method requires a second-order derivative of the yield function to generate a complicated code, and the convergence cannot be guaranteed beforehand. The proposed fixed-point iteration does not require a second-order derivative of the yield function, and convergence is ensured for a given strain increment. The fixed-point iteration is easier to implement, and the computational time is shortened compared with the Newton-Raphson method. The plane-stress condition is considered for the biaxial loading conditions to confirm the convergence of the fixed-point iteration. 3-dimensional tensile specimen is considered to compare the computational times in the ABAQUS/explicit finite element analysis.

Nonparametric Detection of a Discontinuity Point in the Variance Function with the Second Moment Function

  • Huh, Jib
    • Journal of the Korean Data and Information Science Society
    • /
    • 제16권3호
    • /
    • pp.591-601
    • /
    • 2005
  • 지금까지 회귀모형에서 불연속점의 추정은 주로 평균함수에 대해 연구되어져 왔다. 분산함수는 평균함수와 더불어 회귀모형의 연구에 매우 중요한 함수이며 이 함수가 불연속일 때의 연구는 활발히 이루어지지 않았다. Delgado와 Hidalgo (2000)와 Perron(2001)은 시계열모형에서는 비모수적 추정법에 의해 분산함수의 추정을 연구하였다. Huh와 Kang (2004)은 Perron의 추정법을 회귀모형에 적용하여 분산함수의 불연속점의 추정에 대하여 연구하였고, Perron의 추정량보다 수렴속도가 개선된 불연속점 추정량을 제안하였다 이러한 분산함수의 추정들은 잔차의 제곱을 이용한 것으로 평균함수의 추정이 필수적이다. 결국, 전체적인 계산량이 늘어나게 되고, 늘어난 만큼 불연속점 추정의 정도가 벌어지게 될 것이다. 만약, 평균함수가 연속이고 분산함수만 불연속이라면 굳이 잔차를 이용하여 분산함수의 불연속점을 추정할 필요 없다. 분산함수만 불연속점을 가지므로 이차적률함수의 불연속점이 곧 분산함수의 불연속점이므로 이차함수의 불연속점을 추정하는 것으로 충분하다. 평균함수와 분산함수 모두 불연속이라면 불연속점의 위치가 같으므로 평균함수의 불연속점의 위치를 추정하면 분산함수의 불연속점의 위치를 추정하게 되는 것이다. 따라서 이 논문에서는 이차적률함수의 불연속점을 추정하는 방법을 제안하였고 이 제안된 추정량들의 수렴속도가 잔차를 이용한 Huh와 Kang의 분산함수의 불연속점 추정량의 수렴속도와 같음을 보였고, 모의실험 결과에서는 우수함을 보여주었다.

  • PDF