• 제목/요약/키워드: Function Distribution

검색결과 5,618건 처리시간 0.039초

간단한 지수함수를 패턴 밀도 함수로 이용한 LGP 패턴 설계 (LGP Pattern Design by Using a Pattern Density Function with Simple Exponential Function)

  • 김영철;김대욱;오태식;이용민;안승준;김호섭
    • 한국광학회지
    • /
    • 제21권3호
    • /
    • pp.97-102
    • /
    • 2010
  • 전산모사를 통하여 LGP 출력 분포를 조절할 수 있는 패턴 밀도 함수를 찾고 그 효과를 조사하였다. 패턴 밀도 함수, 즉 패턴 간격은 [Pexp(-y/70)+Qexp(+y/25)]R로 조사되었다. 이 함수를 이용하여 패턴의 간격을 조절하는 방식으로 반구형 패턴이 장착된 도광판을 설계하여 도광판 출력 분포를 분석한 결과 출력 분포가 등간격 패턴에 의한 출력 분포에 비하여 확연히 개선되는 것을 확인하였다. 또한 이 함수를 피라미드 패턴에 적용하여 도광판의 출력을 조사하였는데, 반구형 패턴의 경우와 마찬가지로 출력 분포가 개선되는 것을 확인하였다.

Exponentiated Quasi Lindley distribution

  • Elbatal, I.;Diab, L.S.;Elgarhy, M.
    • International Journal of Reliability and Applications
    • /
    • 제17권1호
    • /
    • pp.1-19
    • /
    • 2016
  • The Exponentiated Quasi Lindley (EQL) distribution which is an extension of the quasi Lindley Distribution is introduced and its properties are explored. This new distribution represents a more flexible model for the lifetime data. Some statistical properties of the proposed distribution including the shapes of the density and hazard rate functions, the moments and moment generating function, the distribution of the order statistics are given. The maximum likelihood estimation technique is used to estimate the model parameters and finally an application of the model with a real data set is presented for the illustration of the usefulness of the proposed distribution.

베타-이항분포의 공액성을 근거로 한 유한 모집단의 신뢰성 입증 시험 (Reliability Demonstration Test for a Finite Population Based on the Conjugacy of the Beta-Binomial Distribution)

  • 전종선;안선응
    • 산업경영시스템학회지
    • /
    • 제35권2호
    • /
    • pp.98-105
    • /
    • 2012
  • This paper describes the Bayesian approach for reliability demonstration test based on the samples from a finite population. The Bayesian approach involves the technical method about how to combine the prior distribution and the likelihood function to produce the posterior distribution. In this paper, the hypergeometric distribution is adopted as a likelihood function for a finite population. The conjugacy of the beta-binomial distribution and the hypergeometric distribution is shown and is used to make a decision about whether to accept or reject the finite population judging from a viewpoint of faulty goods. A numerical example is also given.

A comparison of inverse transform and composition methods of data simulation from the Lindley distribution

  • Okwuokenye, Macaulay;Peace, Karl E.
    • Communications for Statistical Applications and Methods
    • /
    • 제23권6호
    • /
    • pp.517-529
    • /
    • 2016
  • This study compares the inverse transform and the composition methods for generating data from the Lindley distribution. The expression for the inverse of the distribution function for the Lindley distribution does not exist in closed form. Hence, authors of many empirical studies on the Lindley distribution used methods for generating Lindley variates other than the inverse transform. We generated data from the Lindley distribution using the inverse transform approach by obtaining the Lindley variates numerically; we also generated data from this distribution using the composition approach. Following the generation of the Lindley variates using these two methods, we compare some statistical properties of the estimates of the Lindley model parameters based on the generated data. We conclude that the two methods produce similar results.

DERIVATIVE OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • 대한수학회보
    • /
    • 제48권2호
    • /
    • pp.261-275
    • /
    • 2011
  • We give characterizations of the differentiability points and the non-differentiability points of the Riesz-N$\'{a}$gy-Tak$\'{a}$cs(RNT) singulr function using the distribution sets in the unit interval. Using characterizations, we show that the Hausdorff dimension of the non-differentiability points of the RNT singular function is greater than 0 and the packing dimension of the infinite derivative points of the RNT singular function is less than 1. Further the RNT singular function is nowhere differentiable in the sense of topological magnitude, which leads to that the packing dimension of the non-differentiability points of the RNT singular function is 1. Finally we show that our characterizations generalize a recent result from the ($\tau$, $\tau$ - 1)-expansion associated with the RNT singular function adding a new result for a sufficient condition for the non-differentiability points.

A Improved Method of Determining Everett Function with Logarithm Function and Least Square Method

  • Hong, Sun-Ki
    • 조명전기설비학회논문지
    • /
    • 제22권7호
    • /
    • pp.16-21
    • /
    • 2008
  • For Preisach model, Everett function from the transient curves is needed to simulate the hysteresis phenomena. However it becomes very difficult to get the function if the it would be made only from experiments. In this paper, a simple and stable procedure using least square method and logarithm function to determine the Everett function which follows the Gauss distribution for interaction field axis is proposed. The characteristics of the parameters used in this procedure are also presented. The proposed method is applied to implement hysteresis loops. The simulation for hysteresis loop is compared with experiments and good agreements could be shown.

조위자료의 확률밀도함수 추정 (Estimation of Probability Density Function of Tidal Elevation Data)

  • 조홍연;정신택;오영민
    • 한국해안해양공학회지
    • /
    • 제16권3호
    • /
    • pp.152-161
    • /
    • 2004
  • 우리나라 연안 조위자료의 확률밀도함수 형태로 쌍봉형 정규분포 함수 형태를 제안하였다. 빈도분포 해석은 국립해양조사원에서 제공하는 인천, 군산, 목포, 제주, 여수, 마산, 가덕도, 부산, 포항, 속초 검조소의 1시간 간격 조위자료를 사용하였다. RMS 오차 및 결정계수($R^2$) 값을 비교ㆍ분석한 결과, 조위자료의 확률밀도함수로 본 연구에서 제안한 쌍봉형 함수가 기존에 사용하던 정규분포형 함수보다 더 적합한 함수로 파악되었다. 본 연구에서 제안된 함수의 매개변수는 Newton 방법을 수정한 Levenberg-Marquardt 방법으로 추정하였으며, 추정된 매개변수는 분석지점 검조소 자료의 비조화 상수와 밀접한 관계가 있는 것으로 파악되었다.

횡등방성 암석의 강도 이방성 모사를 위한 강도정수 공간분포함수 (Spatial Distribution Functions of Strength Parameters for Simulation of Strength Anisotropy in Transversely Isotropic Rock)

  • 이연규
    • 터널과지하공간
    • /
    • 제26권2호
    • /
    • pp.100-109
    • /
    • 2016
  • 이 연구에서는 횡등방성 암석파괴함수의 개발에 활용할 수 있는 3가지 강도정수 공간분포함수를 제안하였다. 제안된 분포함수는 편구(oblate spheroid)분포함수, 지수분포함수, 강도정수텐서 방향투영함수이며 모두 2개의 모델파라미터로 정의된다. 제안된 분포함수들을 점착력과 마찰각의 공간분포함수로 활용하여 횡등방성 Mohr-Coulomb 파괴함수를 유도한 후 이를 활용하여 수치삼축시험을 모사하였다. 연약면의 경사각과 구속압의 변화에 따른 파괴축응력 변화 및 파괴면 방향 변화를 계산한 결과 3개의 분포함수을 적용한 경우 모두 실제 실험에서 관찰되는 이방성 파괴특성을 재현하고 있음을 확인하였다. 3개의 분포함수 중 강도정수텐서 방향투영함수를 채용한 경우가 가장 큰 파괴축강도를 계산하였으며 지수분포함수, 편구분포함수 순으로 낮은 파괴축강도 값을 예측하였다.

CHARACTERIZATIONS OF THE GAMMA DISTRIBUTION BY INDEPENDENCE PROPERTY OF RANDOM VARIABLES

  • Jin, Hyun-Woo;Lee, Min-Young
    • 충청수학회지
    • /
    • 제27권2호
    • /
    • pp.157-163
    • /
    • 2014
  • Let {$X_i$, $1{\leq}i{\leq}n$} be a sequence of i.i.d. sequence of positive random variables with common absolutely continuous cumulative distribution function F(x) and probability density function f(x) and $E(X^2)$ < ${\infty}$. The random variables X + Y and $\frac{(X-Y)^2}{(X+Y)^2}$ are independent if and only if X and Y have gamma distributions. In addition, the random variables $S_n$ and $\frac{\sum_{i=1}^{m}(X_i)^2}{(S_n)^2}$ with $S_n=\sum_{i=1}^{n}X_i$ are independent for $1{\leq}m$ < n if and only if $X_i$ has gamma distribution for $i=1,{\cdots},n$.

Estimation of the exponentiated half-logistic distribution based on multiply Type-I hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.47-64
    • /
    • 2020
  • In this paper, we derive some estimators of the scale parameter of the exponentiated half-logistic distribution based on the multiply Type-I hybrid censoring scheme. We assume that the shape parameter λ is known. We obtain the maximum likelihood estimator of the scale parameter σ. The scale parameter is estimated by approximating the given likelihood function using two different Taylor series expansions since the likelihood equation is not explicitly solved. We also obtain Bayes estimators using prior distribution. To obtain the Bayes estimators, we use the squared error loss function and general entropy loss function (shape parameter q = -0.5, 1.0). We also derive interval estimation such as the asymptotic confidence interval, the credible interval, and the highest posterior density interval. Finally, we compare the proposed estimators in the sense of the mean squared error through Monte Carlo simulation. The average length of 95% intervals and the corresponding coverage probability are also obtained.