• Title/Summary/Keyword: Fumigant

Search Result 87, Processing Time 0.022 seconds

Essential Oil Isolated from Iranian Yarrow as a Bio-rational Agent to the Management of Saw-toothed Grain Beetle, Oryzaephilus surinamensis (L.) (머리대장가는납작벌레의 합리적 방제 물질로 이란 서양가새풀 정유의 살충효과 평가)

  • Ebadollahi, Asgar
    • Korean journal of applied entomology
    • /
    • v.56 no.4
    • /
    • pp.395-402
    • /
    • 2017
  • Overuse of synthetic pesticides caused negative side-effects such as environmental contamination, development of insect pests' resistance, and effects on non-target organisms. Plant origin substances without/or with low mammalian toxicity have been considered as promising alternatives to the synthetic pesticides. Fumigant toxicity of the essential oil of Iranian Yarrow, Achillea millefolium L., was investigated against a cosmopolitan stored-product insect pest: saw-toothed grain beetle (Oryzaephilus surinamensis L.). Chemical profile of this essential oil was studied by Gas Chromatography-Mass Spectrometry. Tested concentrations were significantly effective to the mortality of insect pest. A positive correlation between essential oil concentrations and pest mortality were realized. LC50 value (lethal concentration needed to 50% mortality) was achieved as $17.977(16.195{\pm}20.433){\mu}l/l$ air. The main components were 1,8-Cineole (13.17%), nerolidol (12.87%), ${\alpha}$-cubebene (12.35%), artemisia ketone (6.69%), ${\alpha}$-terpineol (5.27%), alloaromadendrene oxide (4.71%) and borneol (3.99%). Terpenic compounds including monoterpene hydrocarbons (8.19%), monoterpenoids (44.23%), sesquiterpene hydrocarbons (21.69%) and sesquiterpenoids (22.24%) were 96.35% of the total identified compounds. Results indicated that the terpene-rich A. millefolium essential oil may be considered as a safe bio-agent in the O. surinamensis management.

Control efficacy of two nematicides against southern root-knot nematode in a cucumber greenhouse during the fallow period in winter (동계 휴경기간 살선충제 처리에 따른 오이 시설재배지의 고구마뿌리혹선충 방제 효과)

  • Hyoung-Rai Ko;Sekeun Park;Natesan Karthi;Byeong-Yong Park
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.455-462
    • /
    • 2023
  • Southern root-knot nematode (SRKN, Meloidogyne incognita) is known to be responsible for annual economic losses of 38.2 million USD in cucumber cultivation in Korea. Nematicides are frequently used to manage SRKN in plastic greenhouses. A field experiment was conducted to assess the effect of a soil fumigant (dimethyl disulfide, DMDS) and a non-fumigant (fluopyram, FL) against SRKN during the winter fallow season in a greenhouse from October to December. Nematicidal efficacy was assessed at 43 days after treatment, and the root gall index was measured 4 months after transplanting cucumber seedlings. DMDS effectively reduced second-stage SRKN juvenile density with 91% control efficacy, while FL showed no control efficacy against SRKN. Root gall index values were significantly different(p=0.020) in DMDS treatment and controls at 1.0±0.00 and 4.3±0.58, respectively. This study showed that DMDS could be considered an effective nematicide for controlling SRKN in the fallow period in winter.

Antifungal Activity of Five Plant Essential Oils as Fumigant Against Postharvest and Soilborne Plant Pathogenic Fungi

  • Lee, Sun-Og;Choi, Gyung-Ja;Jang, Kyoung-Soo;Lim, He-Kyoung;Cho, Kwang-Yun;Kim, Jin-Cheol
    • The Plant Pathology Journal
    • /
    • v.23 no.2
    • /
    • pp.97-102
    • /
    • 2007
  • A total of 39 essential oils were tested for antifungal activities as volatile compounds against five phytopathogenic fungi at a dose of 1 ${\mu}l$ per plate. Five essential oils showed inhibitory activities against mycelial growth of at least one phytopathogenic fungus. Origanum vulgare essential oil inhibited mycelial growth of all of the five fungi tested. Both Cuminum cyminum and Eucalyptus citriodora oils displayed in vitro antifungal activities against four phytopathogenic fungi except for Colletotrichum gloeosporioides. The essential oil of Thymus vulgaris suppressed the mycelial growth of C. gloeosporioides, Fusarium oxysporum and Rhizoctonia solani and that of Cymbopogon citratus was active to only F. oxysporum. The chemical compositions of the five active essential oils were determined by gas chromatography-mass spectrometry. This study suggests that both E. citriodora and C. cyminum oils have a potential as antifungal preservatives for the control of storage diseases of various crops.

Microbial Basis for Enhanced Degradation of the Fumigant 1,3-Dichloropropene (1,3-D) in Soil

  • Chung, Keun-Yook
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.10a
    • /
    • pp.125-139
    • /
    • 2000
  • The differential enhanced degradation of cis- and trans-1,3-D was observed in the previous two studies performed by Ou et al. (1995) and especially Chung et al. (1999). This study was initiated to investigate the involvement of microorganisms in the differential enhanced degradation of the chemicals. As expected, microorganisms were responsible for the enhanced degradation of the chemicals. A mixed bacterial culture capable of degrading 1,3-D was isolated from an enhanced soil sample collected from a site treated with 1,3-D. Similar to the enhanced soil, the mixed culture degraded trans-1,3-D faster than cis-1,3-D. This mixed culture could not utilize cis- and trans-1,3-D as a sole source of carbon for growth. Rather, a variety of second substrates were evaluated to stimulate the differential enhanced degradation of the two isomers. As a result, the mixed culture degraded cis- and trans-1,3-D only in the presence of a suitable second substrate. Second substrates that had the capacity to stimulate the degradation included soil leachate, tryptone, tryptophan, and alanine. Other substrates tested, including soil extract, glucose, yeast extract, and indole (ailed to stimulate the degradation of the two isomers. Therefore, it appeared that the degradation of cis- and trans-1,3-D was a cometabolic process. The mixed culture was composed of four morphologically distinctive bacterial colonies.

  • PDF

Recent Studies on Development of Transgenic Plants Induced Root-Knot Nematode Resistance by RNA Interference Suppression of Nematode Genes and Nematode Prevention (뿌리혹선충 유전자의 RNA 간섭 억제에 의한 선충저항성 식물 개발 및 선충방제의 최근 연구 동향)

  • Hahn, Bum-Soo
    • Research in Plant Disease
    • /
    • v.16 no.1
    • /
    • pp.10-20
    • /
    • 2010
  • Root-knot nematodes cause billions of dollars in crop losses annually have a broad range of host over 2,000 species of plants. These nematodes are known as obligate, sedentary endo-parasites in a plant host to feed upon to complete their life cycle. To prevent the plant parasitic nematode, methyl bromide was widely applied as a soil fumigant. Other strategies to prevent or control nematodes involve RNAi-mediated suppression, R gene transformation, natural products or chemical treatments, the expression of peptide or proteins in susceptible plants, and others. Over the last decade, the entry in GenBank for Meloidogyne reveals 73,340 ESTs and recently two complete Meloidogyne spp. genomes sequences have simultaneously been presented by two groups. Recent works have demonstrated the effect of RNAi suppression to nematode target genes. These results will provide novel members of genes as a foundation for studies focused on understanding the function of M. incognita nematode genes as well as for the development of novel target genes for parasite control. Thus the successful development of biotechnology-derived plants with nematode resistance will result in large yield benefits for producers as well as environmental benefits and will accelerate the research related to pathogensresistant crops.

Radurization and Radicidation of Spices (향신료(香辛料)의 방사선조사(放射線照射) 살균(殺菌))

  • Byun, Myung-Woo
    • Korean Journal of Food Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.311-318
    • /
    • 1985
  • This review was intended to develop the sterilization method of spices by gamma irradiation and the results are summarized as follows. Microbial load of spices was different according to the kind of spices and the number was ranged from $10^{2}$-$10^{5}/g$ to $10^{7}$-$10^{8}/g$, gamma irradiation up to 4-10 kGy could decreased or sterilized to the microorganism of spices. In physicochemical properties of spices such as chemical components,essential oil and flavor, irradiated group with optimum dose was almost similar to the nonirradiated one, while fumigant treated group was remarkably deteriorated in the properties of spices compared with control, and free radicals produced by irradiation was disappeared during a few days storage. Irradiated spices should be an aptitude for good quality the storeability of processing food. Optimum dose irradiation below less than that proposed by FAO/IAEA/WHO Joint Committee and FDA was remarkably effect on the sterilization of spices and superior in wholesomeness and economic feasibiity compared with traditional methods. Irradiation might be an alternative to traditional sterilization methods of spices by fumigants such as ethylene oxide and ethylene dibromide because their treatments have been banned in U.S.A and other countries since 1982.

  • PDF

Multi Analysis of Fumigants in Soil and Water (물과 토양에서 훈증제의 동시분석법 확립)

  • Kim, Jung-Ho
    • Environmental Analysis Health and Toxicology
    • /
    • v.21 no.4 s.55
    • /
    • pp.365-373
    • /
    • 2006
  • Emission of methyl bromide (MeBr) from soil was implicated in stratospheric ozone depletion. To determine multi analysis of alternatives fumigants for MeBr, this paper describes the methods of analysis in water and soil. The MeBr, methyl iodide (Mel), propargyl bromide (PBr), cis 1,3-dichloropropene (cis 1,3-D), trans 1,3-dichloropropene (trans 1,3-D) and chloropicrin(CP) are separated on the base line on GC-ECD at three column of AT+DB+DB (90m) with temperature programing of $35^{\circ}C{\rightarrow}110^{\circ}C$ on GC-ECD. The relative retention time for MeBr, Mel, PBr, cis 1,3-D, trans 1,3-D and CP is 1.0, 1.4, 2.3, 3.2, 3.6 and 3.7, respertively. The detection limit for MeBr, Mel, PBr, cis 1,3-D, trans 1,3-D and CP is 469 pg, 5 pg, 21 pg, 79 pg, 101 PE and 5pg, respectively. Recovery of MeBr Mel, PBr, cis 1,3-D, trans 1,3-D and CP in water added 150 ppm fumigants were 81%, 96%, 95%, 97%, 98% and 99%, respectively. Recovery of MeBr, MeI, PBr, cis 1, 3-D, trans 1,3-D and CP in soil added 150ppm fumigants were 56%, 84%), 85%, 81%, 87% and 88%, respectively.

Genetic Toxicity Test of 1,2-Dibromoethane by Ames, Micronucleus, Comet Assays and Microarray Analysis

  • Kim, Ki-Y.;Kim, Ji-H.;Kwon, Kyoung-J.;Go, Seo-Y.;Min, Kyung-N.;Lee, Woo-S.;Park, Sue-N.;Shee, Yhun-Y.
    • Biomolecules & Therapeutics
    • /
    • v.14 no.4
    • /
    • pp.246-252
    • /
    • 2006
  • 1,2-Dibromoethane(DBE) has been widely used as a soil fumigant, an additive to leaded gasoline and an industrial solvent. In this study, we have carried out in vitro genetic toxicity test of 1,2-dibromoethane and microarray analysis of differentially expressed genes in response to 1,2-dibromoethane. 1,2-Dibromoethane showed mutations in base substitution strain TA1535 both with and without exogenous metabolic activation. 1,2-Dibromoethane showed mutations in frame shift TA98 both with and without exogenous metabolic activation. 1,2-Dibromoethane showed DNA damage based on single cell gel/comet assay in L5178Y cells both with and without exogenous metabolic activation. 1,2-Dibromoethane increased micronuclei in CRO cells both with and without exogenous metabolic activation. Microarray analysis of gene expression profiles in L5178Y cells in response to 1,2-dibromoethane selected differentially expressed 241 genes that would be candidate biomarkers of genetic toxic action of 1,2-dibromoethane.

Influence of Allyl Isothiocyanate on the Soil Microbial Community Structure and Composition during Pepper Cultivation

  • Gao, Jingxia;Pei, Hongxia;Xie, Hua
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.7
    • /
    • pp.978-989
    • /
    • 2021
  • Allyl isothiocyanate (AITC), as a fumigant, plays an important role in soil control of nematodes, soil-borne pathogens, and weeds, but its effects on soil microorganisms are unclear. In this study, the effects of AITC on microbial diversity and community composition of Capsicum annuum L. soil were investigated through Illumina high-throughput sequencing. The results showed that microbial diversity and community structure were significantly influenced by AITC. AITC reduced the diversity of soil bacteria, stimulated the diversity of the soil fungal community, and significantly changed the structure of fungal community. AITC decreased the relative abundance of dominant bacteria Planctomycetes, Acinetobacter, Pseudodeganella, and RB41, but increased that of Lysobacter, Sphingomonas, Pseudomonas, Luteimonas, Pseudoxanthomonas, and Bacillus at the genera level, while for fungi, Trichoderma, Neurospora, and Lasiodiplodia decreased significantly and Aspergillus, Cladosporium, Fusarium, Penicillium, and Saccharomyces were higher than the control. The correlation analysis suggested cellulase had a significant correlation with fungal operational taxonomic units and there was a significant correlation between cellulase and fungal diversity, while catalase, cellulose, sucrase, and urease were the major contributors in the shift of the community structure. Our results will provide useful information for the use of AITC in the assessment of environmental and ecological security.

The utilization of fungicide and insecticide from medicinal plants for conservation of cultural properties (천연약재로부터 문화재보존용 방충방균제 개발연구)

  • Chung, Yong-Jae;Lee, Kyu-Shik;Han, Sung-Hee;Kang, Dai-Ill;Lee, Myeong-Hui
    • 보존과학연구
    • /
    • s.22
    • /
    • pp.5-25
    • /
    • 2001
  • The germicidal and insecticidal properties of volatile components extracted from star anise(Illicium verum Hooker filius) and clove (Eugenia caryophyllata THUNBERG)were evaluated against five microorganisms and three insects for the purpose of developing biocidal active substances from medicinal plants. The volatile components of star anise and clove showed strong antimicrobial effect against Aspergillus niger, Penicillium funiculosum, Mucor hiemalis, Trichoderma viride, and Aureobasidium pullulans. The extracts of each medicine also showed insecticidal effects against Sitophilusoryzae L., Lyctus linearis GOZE, and Reticulitermes spertus kyushuensis Morimoto. Fumigant toxicities to adult insects were determined. In the case of fumiganttoxicity, the extract of star anise showed 100% mortality against R. spertus, S.oryzae, and L. linearis at rates of $2.5\mu\ell$, $50\mu\ell$, $250\mu\ell$/filter paper, respectively but showed no killing effects by clove. The volatile components of star anise and clove were investigated by means of GC/MS. The main constitute, anethole among 20components from star anise and eugenol among 9 components from clove were identified. The mixture of star anise and clove as the volume ratio of 2 : 1 showed higher properties for antimicrobial and insecticidal effect than each volatile component. A. niger was inhibited by the mixture(125ml/$m^3$) for up to 10 days of exposure. Also, from the result of observing state change of organic materials by volatile extracts of star anise and clove, volatile extracts effects have no effect on natural organic materials of organic cultural properties and can be used as biological control agent. As research contents as above, the insecticidal and germicidal agents from star anise and clove and the mixture of them were more efficient and high level to prevent biological damage for conservation of organic cultural properties. So they may be used in new development of biologicalinsecticidal and germicidal agents for conservation of cultural properties.

  • PDF