Browse > Article
http://dx.doi.org/10.5423/RPD.2010.16.1.010

Recent Studies on Development of Transgenic Plants Induced Root-Knot Nematode Resistance by RNA Interference Suppression of Nematode Genes and Nematode Prevention  

Hahn, Bum-Soo (National Academy of Agricultural Science)
Publication Information
Research in Plant Disease / v.16, no.1, 2010 , pp. 10-20 More about this Journal
Abstract
Root-knot nematodes cause billions of dollars in crop losses annually have a broad range of host over 2,000 species of plants. These nematodes are known as obligate, sedentary endo-parasites in a plant host to feed upon to complete their life cycle. To prevent the plant parasitic nematode, methyl bromide was widely applied as a soil fumigant. Other strategies to prevent or control nematodes involve RNAi-mediated suppression, R gene transformation, natural products or chemical treatments, the expression of peptide or proteins in susceptible plants, and others. Over the last decade, the entry in GenBank for Meloidogyne reveals 73,340 ESTs and recently two complete Meloidogyne spp. genomes sequences have simultaneously been presented by two groups. Recent works have demonstrated the effect of RNAi suppression to nematode target genes. These results will provide novel members of genes as a foundation for studies focused on understanding the function of M. incognita nematode genes as well as for the development of novel target genes for parasite control. Thus the successful development of biotechnology-derived plants with nematode resistance will result in large yield benefits for producers as well as environmental benefits and will accelerate the research related to pathogensresistant crops.
Keywords
Meloidogyne; Prevention; RNAi; Root-knot nematode; Transgenic plant;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Veech, J. A. and McClure, M. A. 1977. Terpenoid aldehydes in cotton roots susceptible and resistant to the root-knot nematode, Meloidogyne incognita. J. Nematol. 9: 225-229.
2 Vishnudasan, D., Tripathi, M. N., Rao, U. and Khurana, P. 2005. Assessment of nematode resistance in wheat transgenic plants expressing potato proteinase inhibitor (PIN2) gene. Transgenic Res. 14: 665-675.   DOI
3 Vos, P., Simons, G, Jesse, T., Wijbrandi, J., Heinen, L., Hogers, R., Frijters, A., Groenendijk, J., Diergaarde, P., Reijans, M., Fierens-Onstenk, J., de Both, M., Peleman, J., Liharska, T., Hontelez, J. and Zabeau, M. 1998. The tomato Mi-I gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 16: 1365-1369.   DOI
4 Wei, J. -Z., Hale, K., Carta, L., Platzer, E., Wong, C., Fang, S.-C. and Aroian, R. V. 2003. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 100: 2760-2765.   DOI
5 Wider, T. L. and Abawi, G S. 2000. Mechanism of suppression of Meloidogyne hapla and its damage by a green manure of Sudan grass. Plant Dis. 84: 562-568.   DOI
6 Wiggers, R. J., Starr, J. L. and Price, H. J. 1990. DNA content and variation in chromosome number in plant cells affected by Meloidogyne incognita and M arenaria. Phytopathology, 80: 1391-1395.   DOI
7 Wylie, T., Martin, J., Abubucker, S., Yin, Y., Messina, D., Wang, Z., McCarter, J. P. and Mitreva, M. 2008. NemaPath: online exploration of KEGG-based metabolic pathways for nematodes. BMC Genomics. 9: 525.   DOI
8 Yadav, B. C., Veluthambi, K. and Subramaniam, K. 2006. Host-generated double stranded RNA induces RNAi in plantparasitic nematodes and protects the host from infection. Mol. Biochem. Parasitol. 148: 219-222.   DOI
9 Yoon, Y., Kim, E., Hwang, Y. and Choi, C. 2004. Avermectin: biochemical and molecular basis of its biosynthesis and regulation. Appl. Microbiol. Biotechnol. 63: 626-634.   DOI
10 Soriano, I. R., Asenstorfer, R. E., Schmidt, O. and Riley, I. T. 2004a. Inducible flavone in oats (Avena sativa) is a novel defense against plant-parasitic nematodes. Phytopathol. 94: 1207-1214.   DOI
11 Soriano. I. R., Riley, I.T., Potter, M. J. and Bowers, W.S. 2004b. Phytoecdysteroids: a novel defense against plant-parasitic nematodes. J. Chem. Ecol. 30: 1885-1899.   DOI   ScienceOn
12 Timmons, L. and Fire, A. 1998. Specific interference by ingested dsRNA. Nature 395: 854.   DOI
13 Urwin, P. E., Green, J. and Atkinson, H. J. 2003. Expression of a plant cystatin confers partial resistance to Globodera, full resistance is achieved by pyramiding a cystatin with natural resistance. Mol. Breeding 12: 263-269.   DOI
14 Vain, P., Worland, B., Clarke, M. C, Richard, G., Beavis, M., Liu, H., Kohli, A., Leech, M., Snape, J. W., Atkinson, H. and Christou, P. 1998. Expression of an engineered cysteine proteinase inhibitor (OC-I$\Delta$D86) for nematode resistance in transgenic rice plants. Theor. Appl. Genet. 96: 266-271.   DOI
15 Urwin, P. E., McPherson, M. J. and Atkinson, H. J. 1998. Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204: 472-479.   DOI
16 Urwin, P. E., Troth, K. M., Zubko, E. I. and Atkinson, H. J. 2001. Effective transgenic resistance to Globodera pallida in potato field trials. Mol. Breeding 8: 95-101.   DOI
17 Urwin, P. E., Lilley, C. J., McPherson, M. J. and Atkinson, H. J. 1997. Resistance to both cyst and root-knot nematodes conferred by transgenic Arabidopsis expressing a modified plant cystatin. Plant J. 12: 455-461.   DOI
18 Valette, C., Andary, C., Geiger, J. P., Sarah, J. L. and Nicole, M. 1998. Histochemical and cytochemical investigations of phenols in roots of banana infected by the burrowing nematode Radopholus similis. Phytopathol. 88: 1141-1148.   DOI
19 Ripoll, C., Favery, B., Lecomte, P., Van Damme, E., Peumans, W., Abad, P. and Jouanin, L. 2003. Evaluation of the ability of lectin from snowdrop (Galanthus nivalis) to protect plants against root-knot nematodes. Plant Sci. 164: 517-523.   DOI
20 Rossi, M., Goggin, F.L., Milligan, S. B., Kaloshian, I., Ullman, D. E. and Williamson, V. M. 1998. The nematode resistance gene Mi of tomato confers resistance against the potato aphid. Proc. Natl. Acad Sci. USA 95: 9750-9754.   DOI
21 Rosso, M. N., Dubrana, M. P., Cimbolini, N., Jaubert, S. and Abad, P. 2005. Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol. Plant Microbe. Interact. 18: 615-620.   DOI
22 Sijen, T., Fleenor, J., Simmer, F., Thijssen, K. L., Parrish, S., Timmons, L., Plasterk, R. H. and Fire, A. 2001. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107: 465-476.   DOI
23 Sasser, J. N. 1980. Root-knot nematodes: A global menace to crop production. Plant Dis. 64: 36-41.   DOI
24 Sharon, E., Spiegel, Y, Salomon, R. and Curtis, R. H. C. 2002. Characterization of Meloidogyne javanica surface coat with antibodies and their effect on nematode behaviour. Parasitology 125: 177-185.
25 Shingles, J., Lilley, C. J., Atkinson, H. J. and Urwin, P. E. 2007. Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp. Parasitol. 115: 114-120.   DOI
26 Sobczak, M., Avrova, A., Jupowicz, J., Phillips, M. S., Emst, K. and Kumar, A. 2005. Characterization of susceptibility and resistance responses to potato cyst nematode (Globodera spp.) infection of tomato lines in the absence and presence of the broad-spectrum nematode resistance Hero gene. Mol. Plant Microbe. Interact. 18: 158-168.   DOI
27 Messeguer, R., Ganal, M., Devicente, M. C., Young, N. D., Bolkan, H. and Tanksley, S. D. 1991. High-resolution RFLP map around the root-knot nematode resistance gene (Mi) in tomato. Theor. Appl. Genet. 82: 529-536.   DOI
28 Milligan, S. B., Bodeau, J., Yaghoobi, J., Kaloshian, I., Zabel, P. and Williamson, V. M. 1998. The root-knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10: 1307-1319.   DOI
29 Nagaraj, S. H., Gasser, R. B. and Ranganathan, S. 2008. Needles in the EST Haystack: Large-Scale Identification and Analysis of Excretory-Secretory (ES) Proteins in Parasitic Nematodes Using Expressed Sequence Tags (ESTs). PLoS. Negl. Trop. Dis. 2: e301.   DOI
30 Opperman, C. H., Bird, D. M., Williamson, V. M., Rokhsar, D. S., Burke, M., Cohn, J., Cromer, J., Diener, S., Gajan, J.,Graham, S., Houfek, T. D., Liu, Q., Mitros, T., Schaff, J., Schaffer, R., Scholl, E., Sosinski, B. R., Thomas, V. P. and Windham, E. 2008. Sequence and genetic map of Meloidogyne hapla: A compact nematode genome for plant parasitism. Proc. Natl. Acad. Sci. U.S.A. 105: 14802-14807.   DOI
31 Rosso, M. N., Jones, J. T. and Abad, P. 2009. RNAi and Functional Genomics in Plant Parasitic Nematodes. Annu. Rev. Phytopathol. 47: 207-232.   DOI
32 Pak, H. K., Sim, J. S., Rhee, Y., Ko, H. R., Ha, S. H., Yoon, M. S., Kang, C. H., Lee, S., Kim, Y. H. and Hahn, B. S. 2009. Hairy root induction in Oriental melon (Cucumis melo) by Agrobacterium rhizogenes and reproduction of the root-knot nematode (Meloidogyne incognita) Plant Cell Tiss. Organ Cult. 98: 219-228.   DOI
33 Rasmann, S., Kollner, T, Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., Gershenzon, J. and Turlings, T. 2005. Recruitment of entomopathogenic nematodes by insectdamaged maize roots. Nature 434: 732-737.   DOI   ScienceOn
34 Rich, J. R., Keen, N. T. and Thomason, I. J. 1977. Association of coumestans with the hypersensitivity of lima bean roots to Pratylenchus scribneri. Physio. Plant Path. 10: 105-116.   DOI
35 Jaubert, S., Ledger, T. N., Laffaire, J. B., Piotte, C., Abad, P. and Rosso, M. N. 2002. Direct identification of stylet secreted proteins from root-knot nematodes by a proteomic approach. Mol. Biochem. Parasitol. 121: 205-211.   DOI
36 Jones, M. G. and Northcote, D. H. 1972. Nematode-induced syncytium-a multinucleate transfer cell. J. Cell Sci. 10: 789-809.
37 Jung, C., Cai, D. and Kleine, M. 1998. Engineering nematode resistance in crop species. Trends Plant Sci. 3: 266-271.   DOI
38 Kaplan, D. T. and Keen, N. T. 1980. Mechanisms conferring plant incompatibility to nematodes. Revue Nematol. 3: 123-134.
39 Li, X. Q., Wei, J. Z., Tan, A. and Aroian, R. V. 2007. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol. J. 5: 455-464.   DOI
40 Kawaji, H. and Hayashizaki, Y. 2008. Exploration of small RNAs. PLoS. Genet. 4: e22.   DOI
41 Marban-Mendoza, N., Jeyaprakash, A., Jansson, H. B., Damon, R. A. and Zuckerman, B. M. 1987. Control of root-knot nematodes on tomato by lectins. J. Nematol. 19: 331-335.
42 Marroquin, L. D., Elyassnia, D., Griffitts, J. S., Feitelson, J. S. and Aroian, R. V. 2000. Bacillus thuringiensis (Bt) toxin susceptibility and isolation of resistance mutants in the nematode Caenorhabditis elegans. Genetics 155: 1693-1699.
43 McCarter, J. P. 2009. "Molecular Approaches Toward Resistance to Plant-Parasitic Nematodes", Chapter in Cell Biology of Plant Nematode Parasitism, Berg, R. H. and C. G Taylor eds., Series: Plant Cell Monographs, Vol. 15, Springer-Verlag Press, Berlin.
44 McCarter, J. P., Mitreva, M. D., Martin, J., Dante, M., Wylie, T., Rao, U., Pape, D., Bowers, Y., Theising, B., Murphy, C. V., Kloek, A. P., Chiapelli, B. J., Clifton, S.W., Bird, D. M. and Waterston, R. H. 2003. Analysis and functional classification of transcripts from the nematode Meloidogyne incognita. Genome Biol. 4: R26.   DOI
45 Gleason, C. A., Liu, Q. L. and Williamson, V. M. 2008. Silencing a candidate nematode effector gene corresponding to the tomato resistance gene Mi-1 leads to acquisition of virulence. Mol. Plant Microbe Interact. 21: 576-585.   DOI
46 Goddijn, O. J., Lindsey, K., van der Lee, F. M., Klap, J. C. and Sijmons, P. C. 1993. Differential gene expression in nematode-induced feeding structures of transgenic plants harbouring promoter- gusA fusion constructs. Plant J. 4: 863-873.   DOI
47 Huang, G., Allen, R., Davis, E. L., Baum, T. J. and Hussey, R. S. 2006. Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential rootknot nematode parasitism gene. Proc. Natl. Acad. Sci. USA 103: 14302-14306.   DOI
48 Goggin, F. L., Shah, G., Williamson, V. M. and Ullman, D. E. 2004. Instability of Mi-mediated nematode resistance in transgenic tomato plants. Mol. Breeding 13: 357-364.   DOI
49 Hannon, G. J. 2002. RNA interference. Nature 418: 244-251.   DOI
50 Hartman, K. M. and Sasser, J. N. 1985. Identification of Meloidogyne species on the basis of differential host test and perineal-pattern morphology. In: Barker, K. R., Carter, C. C. and Sasser, N. (Eds). An Advalued Treatise on Meloidogyne. Vol. II. Methodology, Raleigh, USA, North Carolina State University: 69-77.
51 Huang, G., Gao, B., Maier, T., Allen, R., Davis, E. L., Baum, T. J. and Hussey, R. S. 2003. A profile of putative parasitism genes expressed in the esophageal gland cells of the root-knot nematode Meloidogyne incognita. Mol. Plant Microbe Interact. 16: 376-381.   DOI
52 Jacquet, M., Bongiovanni, M., Martinez, M., Verschave, P., Wajnberg, E. and Castagnone-Sereno, P. 2005. Variation in resistance to the root-knot nematode Meloidogyne incognita in tomato genotypes bearing the Mi gene. Plant Pathol. 54: 93-99.   DOI
53 Bellafiore, S., Shen, Z., Rosso, M. N., Abad, P., Shih, P. and Briggs, S. P. 2008. Direct identification of the Meloidogyne incognita secretome reveals proteins with host cell reprogramming potential. PLoS. Pathog. 4: e1000192.   DOI
54 Chen, R. G., Zhang, L. Y., Zhang, J. H., Zhang, W., Wang, X., Ouyang, B., Li, H. X. and Ye, Z. B. 2006. Functional characterization of Mi, a root-knot nematode resistance gene from tomato (Lycopersicon esculentum L.). J. Int. Plant Biol. 48: 1458-1465.   DOI
55 Fairbaim, D. J., Cavallaro, A. S., Bernard, M., Mahalinga-Iyer, J., Graham, M. W. and Botella, J. R. 2007. Host-delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta. 226: 1525-1533.   DOI
56 Chitwood, D. J. 2002. Phytochemical based strategies for nematode control. Annu. Rev. Phytopathol. 40: 221-249.   DOI
57 Dropkin, V. H. 1969. Cellular responses of plants to nematode infections. Annu. Rev. Phytopathol. 7: 101-122.   DOI
58 Dubreuil, G., Magliano, M., Deleury, E., Abad, P. and Rosso, M. N. 2007. Transcriptome analysis of root-knot nematode functions induced in the early stages of parasitism. New Phytol. 176: 426-436.   DOI
59 Fanelli, E., Di Vito, M., Jones, J. T. and De Giorgi, C. 2005. Analysis of chitin synthase function in a plant parasitic nematode, Meloidogyne artiellia, using RNAi. Gene. 349: 87-95.
60 Fioretti, L., Porter, A, Haydock, P. J. and Curtis, R. 2002. Monoclonal antibodies reactive with secreted-excreted products from the amphids and the cuticle surface of Globodera pallida affect nematode movement and delay invasion of potato roots. Int. J Parasitol. 32: 1709-1718.   DOI
61 Fosu-Nyarko, J., Jones, M. G. and Wang, Z. 2009. Functional characterization of transcripts expressed in early-stage Meloidogyne javanica-induced giant cells isolated by laser microdissection. Mol. Plant Pathol. 10: 237-248.   DOI
62 Baum, T. J., Hiatt, A., Parrott, W. A., Pratt, L. H. and Hussey, R. S. 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol. Plant Microbe. Interact. 9: 382-387.   DOI   ScienceOn
63 Abad, P., Gouzy, J., Aury, J. M., Castagnone-Sereno, P., Danchin, E. G, et al. 2008. Genome sequence of the metazoan plantparasitic nematode Meloidogyne incognita. Nat. Biotechnol. 26: 909-915.   DOI
64 Bakhetia, M., Charlton, W., Atkinson, H. J. and McPherson, M. J. 2005. RNA interference of dual oxidase in the plant nematode Meloidogyne incognita. Mol. Plant Microbe. Interact. 18: 1099-1106.   DOI