• Title/Summary/Keyword: Fully-sintered zirconia

Search Result 7, Processing Time 0.018 seconds

Comparative analysis on intaglio surface trueness, wear volume loss of antagonist, and fracture resistance of full-contour monolithic zirconia crown for single-visit dentistry under simulated mastication

  • Kim, Yong-Kyu;Yoon, Hyung-In;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.3
    • /
    • pp.173-181
    • /
    • 2022
  • PURPOSE. This analysis aimed to evaluate the intaglio surface trueness, antagonist's wear volume loss, and fracture resistance of full-contour crowns of (Y, Nb)-stabilized fully-sintered zirconia (FSZ), 4 mol% or 5 mol% yttria-stabilized partially sintered zirconia (4YZ or 5YZ) with high-speed sintering. MATERIALS AND METHODS. A total of 42 zirconia crowns were separated into three groups: FSZ, 4YZ, and 5YZ (n = 14). The intaglio surface trueness of the crowns was evaluated at the inner surface, occlusal, margin, and axial areas and reported as root-mean-square, positive and negative average deviation. Half of the specimens were aged for 120,000 cycles in the chewing simulator, and the wear volume loss of antagonist was measured. Before and after chewing, the fracture load was measured for each group. The trueness values were analyzed with Welch's ANOVA, and the wear volume loss with the Kruskal-Wallis tests. Effect of the zirconia type and aging on fracture resistance of crowns was tested using two-way ANOVA. RESULTS. The intaglio surface trueness measured at four different areas of the crown was less than 50 ㎛, regardless of the type of zirconia. No significant P in wear volume loss of antagonists were detected among the groups (P > .05). Both the type of zirconia and aging showed statistically significant effects on fracture resistance (P < .05). CONCLUSION. The full-contour crowns of FSZ as well as 4YZ or 5YZ with high-speed sintering were clinically acceptable, in terms of intaglio surface trueness, antagonist's wear volume loss, and fracture resistance after simulated mastication.

Analysis of surface characteristics of (Y, Nb)-TZP after finishing and polishing

  • Seong-keun, Yoo;Ye-Hyeon, Jo;In-Sung Luke, Yeo;Hyung-In, Yoon;Jae-Hyun, Lee;Jin-Soo, Ahn;Jung-Suk, Han
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.6
    • /
    • pp.335-345
    • /
    • 2022
  • PURPOSE. This in vitro study aimed to evaluate the surface characteristics of a full veneer crown fabricated chairside (CS) from a (Y, Nb)-TZP zirconia block in response to conventional zirconia grinding and polishing. MATERIALS AND METHODS. Zirconia crowns (n = 40) were first prepared and divided into two groups of materials: Labside (LS) and CS, after which each specimen went through a five-step grinding and polishing procedure. Following each surface treatment, surface characteristics were analyzed using confocal laser microscopy (CLSM), average surface roughness (Ra) values were processed from the profile data through Gaussian filtering, and X-ray diffraction pattern analysis was performed to evaluate the monoclinic (M) phase content. Then, a representative specimen was selected for field-emission scanning electron microscopy (FE-SEM), followed by a final analysis of the roughness and X-ray diffraction of the specimens using the independent t-test and repeated measures analysis of variance (RM-ANOVA). RESULTS. In every group, polishing significantly reduced the Ra values (P < .001). There was no significant difference in Ra between the polished state CS and LS. Furthermore, CLSM and FE-SEM investigations revealed that even though grain exposure was visible in CS specimens throughout the as-delivered and ground states, the exposure was reduced after polishing. Moreover, while no phase transformation was visible in the LS, phase transformation was visible in CS after every surface treatment, with the M phase content of the CS group showing a significant reduction after polishing (P < .001). CONCLUSION. Within the limits of this study, clinically acceptable level of surface finishing of (Y, Nb)-TZP can be achieved after conventional zirconia polishing sequence.

Analysis of Attrition Rate of 50μm Size Y2O3 Stabilized Zirconia Beads with Different Microstructure and Test Conditions (50μm급 이트리아 안정화 지르코니아 비드의 미세구조 및 마모 조건에 따른 마모율 분석)

  • Kim, Jung-Hwan;Yoon, Sae-Jung;Hahn, Byung-Dong;Ahn, Cheol-Woo;Yoon, Woon-Ha;Choi, Jong-Jin
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.233-240
    • /
    • 2019
  • This study analyzes the mechanical properties, including the attrition rate, of $50{\mu}m$ size yttria-stabilized zirconia (YSZ) beads with different microstructures and high-energy milling conditions. The yttria distribution in the grain and grain-boundary of the fully sintered beads relates closely to Vickers hardness and the attrition rate of the YSZ beads. Grain size, fractured surfaces, and yttrium distribution are analyzed by electronic microscopes. For standardization and a reliable comparison of the attrition rate of zirconia beads with different conditions, Zr content in milled ceramic powder is analyzed and calculated by X-ray Fluorescence Spectrometer(XRF) instead of directly measuring the weight change of milled YSZ beads. The beads with small grain sizes sintered at lower temperature exhibit a higher Vickers hardness and lower attrition rate. The attrition rate of $50{\mu}m$ YSZ beads is measured and compared with the various materials properties of ceramic powders used for high-energy milling. The attrition rate of beads appears to be closely related to the Vickers hardness of ceramic materials used for milling, and demonstrates more than a 10 times higher attrition rate with Alumina(Hv ~1650) powder than $BaTiO_3$ powder (Hv ~315).

Influence of porcelain veneering on the marginal fit of Digident and Lava CAD/CAM zirconia ceramic crowns

  • Pak, Hyun-Soon;Han, Jung-Suk;Lee, Jai-Bong;Kim, Sung-Hun;Yang, Jae-Ho
    • The Journal of Advanced Prosthodontics
    • /
    • v.2 no.2
    • /
    • pp.33-38
    • /
    • 2010
  • PURPOSE. Marginal fit is a very important factor considering the restoration's long-term success. However, adding porcelain to copings can cause distortion and lead to an inadequate fit which exposes more luting material to the oral environment and causes secondary caries. The purpose of this study was to compare the marginal fit of 2 different all-ceramic crown systems before and after porcelain veneering. This study was also intended to verify the marginal fit of crowns originated from green machining of partially sintered blocks of zirconia (Lava CAD/CAM system) and that of crowns obtained through machining of fully sintered blocks of zirconia (Digident CAD/CAM system). MATERIALS AND METHODS. 20 crowns were made per each system and the marginal fit was evaluated through a light microscope with image processing (Accura 2000) at 50 points that were randomly selected. Each crown was measured twice: the first measurement was done after obtaining a 0.5 mm coping and the second measurement was done after porcelain veneering. The means and standard deviations were calculated and statistical inferences among the 2 groups were made using independent t-test and within the same group through paired t-test. RESULTS. The means and standard deviations of the marginal fit were $61.52{\pm}2.88{\mu}m$ for the Digident CAD/CAM zirconia ceramic crowns before porcelain veneering and $83.15{\pm}3.51{\mu}m$ after porcelain veneering. Lava CAD/CAM zirconia ceramic crowns showed means and standard deviations of $62.22{\pm}1.78{\mu}m$ before porcelain veneering and $82.03{\pm}1.85{\mu}m$ after porcelain veneering. Both groups showed significant differences when analyzing the marginal gaps before and after porcelain veneering within each group. However, no significant differences were found when comparing the marginal gaps of each group before porcelain veneering and after porcelain veneering as well. CONCLUSION. The 2 all-ceramic crown systems showed marginal gaps that were within a reported clinically acceptable range of marginal discrepancy.

Effect of M2O3 on the Sinterbility and Electrical Conductivity of ZrO2(Y2O3) System(III) : Ceramics of the ZrO2-Y2O3-Ln2O3 System (ZrO2(Y2O3)계 세라믹스의 소결성과 전기전도도에 대한 M2O3의 영향(III) : ZrO2-Y2O3-Ln2O3계 세라믹스)

  • 오영제;정형진;이희수
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.123-132
    • /
    • 1987
  • Yttria-stabilized zirconia with erbia-lanthana were investigated with respect to the amount of Ln2O3 (Ln; Er, La) addition in the range of 0.5∼5 mol% to the base composition of 8 mol% yttriazirconia. Following analysis and measurement were adopted for the characterization of synthesizes of solid electrolyte; phase transformation, lattice parameter, crystallite size, relative density, chemical composition and SEM/EDS. Electrical conductivity by two-probe method versus temperature from 350$^{\circ}C$ to 800$^{\circ}C$ and frequency in the range of 5Hz∼13MHz by complex impedance method was also conducted together with the determination of oxygen ion transference number by EMF method for the evaluation of their electrical properties. The results were as followsing; Electrical conductivity were decreased with increase in Ln2O3 content, but their activation energies increased. In the case of La2O3 addition, espicially, its electrical conductivity was decreased owing to the segregation of second phases at the grain-boundary. Grain-boundary conductivity of the specimen contained 0.5 mol% Er2O3 exhibited a maximum conductivity among thecompositions experimented. However, their bulk conductivities decreased in both case. Oxygen ion transference number was also reduced with decrease in oxygen partial pressure. For example, in the case of Er2O3 addition it retained value in the range of 0.97∼0.94 abvove 4.74${\times}$10-2in oxygen partial pressure. With the increase in the quantities of the evaporation of additive components, the crystallite size of stabilized zirconia decreased, and their relative density also reduced owing to the formation of porosity in their matrices. In the case of La2O3 the sinterbility was improved in the limited amount of addition up to 0.5 mol%, in the same range of addition the strength of sintered bodies were improved perhaps owing to the precipitation of metastable tetragonal phase in the fully stabilized zirconia.

  • PDF

Effect of various surface treatment methods of highly translucent zirconia on the shear bond strength with resin cement (고투명도 지르코니아의 다양한 표면처리 방법이 레진시멘트와의 전단결합강도에 미치는 영향)

  • Yu-Seong Kim;Jin-Woo Choi;Hee-Kyung Kim
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.3
    • /
    • pp.179-188
    • /
    • 2023
  • Purpose. The purpose of this study was to evaluate the effect of surface treatments on the shear bond strength of two types of zirconia (3-TZP and 5Y-PSZ) with resin cement. Materials and methods. Two different types of zirconia specimens with a fully sintered size of 14.0×14.0×2.0 mm3 were prepared, polished with 400, 600, and 800 grit silicon carbide paper, and buried in epoxy resin. They were classified into four groups each control, sandblasting, primer, and sandblasting & primer. Cylindrical resin adhered to the surface-treated zirconia with resin cement. It was stored in distilled water (37℃) for 24 hours, and a shear bond strength test was performed. The normality of the experimental group was confirmed with the Kolmogorov-Smirnov & Shapiro-Wilk test. The interaction and statistical difference were analyzed using a two-way ANOVA. A post-hoc analysis was performed using Dunnett T3. Results. As a result of two-way ANOVA, there was no significant difference in shear bonding strength between zirconia types (P > .05), but there was a significant correlation in the sandblasting, primer, and alumina sandblasting & primer group (P < .05). Dunnett T3 post-test showed that, regardless of the type of zirconia, shear bonding strength was sandblasting & primer > Primer > sandblasting > control group (P < .05). Conclusion. There was no difference in shear bond strength between the types of zirconia. The highest shear bond strength was shown when the mechanical and chemical treatments of the zirconia surface was performed simultaneously.

Direct Microwave Sintering of Poorly Coupled Ceramics in Electrochemical Devices

  • Amiri, Taghi;Etsell, Thomas H.;Sarkar, Partha
    • Journal of Electrochemical Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.390-397
    • /
    • 2022
  • The use of microwaves as the energy source for synthesis and sintering of ceramics offers substantial advantages compared to conventional gas-fired and electric resistance furnaces. Benefits include much shorter processing times and reaching the sintering temperature more quickly, resulting in superior final product quality. Most oxide ceramics poorly interact with microwave irradiation at low temperatures; thus, a more complex setup including a susceptor is needed, which makes the whole process very complicated. This investigation pursued a new approach, which enabled us to use microwave irradiation directly in poorly coupled oxides. In many solid-state electrochemical devices, the support is either metal or can be reduced to metal. Metal powders in the support can act as an internal susceptor and heat the entire cell. Then sufficient interaction of microwave irradiation and ceramic material can occur as the sample temperature increases. This microwave heating and exothermic reaction of oxidation of the support can sinter the ceramic very efficiently without any external susceptor. In this study, yttria stabilized zirconia (YSZ) and a Ni-YSZ cermet support were used as an example. The cermet was used as the support, and a YSZ electrolyte was coated and sintered directly using microwave irradiation without the use of any susceptor. The results were compared to a similar cell prepared using a conventional electric furnace. The leakage test and full cell power measurement results revealed a fully leak-free electrolyte. Scanning electron microscopy and density measurements show that microwave sintered samples have lower open porosity in the electrode support than conventional heat treatment. This technique offers an efficient way to directly use microwave irradiation to sinter thin film ceramics without a susceptor.