• Title/Summary/Keyword: Fully Developed Region

Search Result 122, Processing Time 0.023 seconds

Inelastic design of high-axially loaded concrete columns in moderate seismicity regions

  • Ho, Johnny Ching Ming
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.559-578
    • /
    • 2011
  • In regions of high seismic risk, high-strength concrete (HSC) columns of tall buildings are designed to be fully ductile during earthquake attack by providing substantial amount of confining steel within the critical region. However. in areas of low to moderate seismic risk, the same provision of confining steel is too conservative because of the reduced seismic demand. More critically, it causes problematic steel congestion in the beam-column joints and column critical region. This will eventually affect the quality of concrete placing owing to blockage. To relieve the problem, the confining steel in the critical region of HSC columns located in low to moderate seismicity regions can be suitably reduced, while maintaining a limited ductility level. Despite the advantage, there are still no guidelines developed for designing limited ductility HSC columns. In this paper, a formula for designing limited ductility HSC columns is presented. The validity of the formula was verified by testing half-scale HSC columns subjected to combined high-axial load and flexure, in which the confining steel was provided as per the proposed formula. From the test results, it is evident that the curvature ductility factors obtained for all these columns were about 10, which is the generally accepted level of limited ductility.

DEVELOPMENT OF A WALL-TO-FLUID HEAT TRANSFER PACKAGE FOR THE SPACE CODE

  • Choi, Ki-Yong;Yun, Byong-Jo;Park, Hyun-Sik;Kim, Hee-Dong;Kim, Yeon-Sik;Lee, Kwon-Yeong;Kim, Kyung-Doo
    • Nuclear Engineering and Technology
    • /
    • v.41 no.9
    • /
    • pp.1143-1156
    • /
    • 2009
  • The SPACE code that is based on a multi-dimensional two-fluid, three-field model is under development for licensing purposes of pressurized water reactors in Korea. Among the participating research and industrial organizations, KAERI is in charge of developing the physical models and correlation packages for the constitutive equations. This paper introduces a developed wall-to-fluid heat transfer package for the SPACE code. The wall-to-fluid heat transfer package consists of twelve heat transfer subregions. For each sub-region, the models in the existing safety analysis codes and the leading models in literature have been peer reviewed in order to determine the best models which can easily be applicable to the SPACE code. Hence a wall-to-fluid heat transfer region selection map has been developed according to the non-condensable gas quality, void fraction, degree of subcooling, and wall temperature. Furthermore, a partitioning methodology which can take into account the split heat flux to the continuous liquid, entrained droplet, and vapor fields is proposed to comply fully with the three-field formulation of the SPACE code. The developed wall-to-fluid heat transfer package has been pre-tested by varying the independent parameters within the application range of the selected correlations. The smoothness between two adjacent heat transfer regimes has also been investigated. More detailed verification work on the developed wall-to-fluid heat transfer package will be carried out when the coupling of a hydraulic solver with the constitutive equations is brought to completion.

Thermo-Hydraulic Characteristics of Two-Dimensional Wavy Channels with Different Shape Parameters (2차원 파형 채널의 형상변화에 따른 열유동 특성)

  • Kim, Ki-Wan;Kim, Sun-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Two-dimensional laminar numerical analyses were carried out for investigating the thermo-hydraulic characteristics of wavy channels with different shape parameters ($0.5{\leq}{\in}{\leq}1.5$, $0.1{\leq}{\gamma}{\leq}0.4$). PAO (polyalphaolefin), which is used for electronics cooling, is considered as the working fluid. In addition, constant properties, periodically developed flow, and uniform channel wall temperature conditions are assumed. Streamline and temperature fields, isothermal Fanning friction factors, and Colburn factors are presented for different Reynolds numbers in the laminar region ($1{\leq}Re{\leq}1000$). The results show that heat transfer is enhanced when the channel corrugation ratio (${\gamma}$) is large and channel spacing ratio (${\in}$) is small in the low Reynolds number region (Re < 50) and when ${\in}$ and ${\gamma}$ are large in the high Reynolds number region ($Re{\geq}50$).

Numerical analysis of turbulent recirculating flow in swirling combustor by non-orthogonal coordinate transformation (비직교 좌표변환에 의한 선회연소기내 난류재순환유동의 수치해석)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.5
    • /
    • pp.1158-1174
    • /
    • 1988
  • A numerical technique is developed for the solution of fully developed turbulent recirculating flow in the passage of variable area using the non-orthogonal coordinate transformation. In the numerical analysis, primitive pressure-velocity finite difference equations were solved by SIMPLER algorithm with 2-equation turbulence model and algebraic stress model (ASM). QUICK scheme on the differencing of convective terms which is free from the inaccuracies of numerical diffusion has been applied to the variable grids and the results compared with those from HYBRID scheme. In order to test the effect of streamline curvatures on turbulent diffusion Lee and Choi streamline curvature correction model which has been obtained by modifying the Leschziner and Rodi's model is testes. The ASM was also employed and the results are compared to those from another turbulence model. The results show that difference of convective differencing schemes and turbulence models give significant differences in the prediction of velocity fields in the expansion region and outlet region of the combustor, however show little differences in the parallel flow region.

Reconstruction of Cheek Defect with Facial Artery Perforator Flap (안면동맥 천공지피판술을 이용한 뺨결손의 재건)

  • Kang, Jae Kyoung;Song, Jung-Kook;Jeong, Hyun Gyo;Shin, Myoung Soo;Yun, Byung Min
    • Archives of Craniofacial Surgery
    • /
    • v.13 no.2
    • /
    • pp.139-142
    • /
    • 2012
  • Purpose: To reconstruct the midface, local flaps such as nasolabial flaps have been frequently used. These local flaps, however, have the shortcomings of requiring a secondary operation or limitations in the movement of the flap. Thus, new methods have been developed. This paper reports a case wherein the basal cell carcinoma on the cheek was resected and the skin and soft tissue defect was successfully treated using a facial artery perforator flap. Methods: A 68-year-old female consulted the authors on the basal cell carcinoma that developed on her cheek. The mass was fully resected and revealed a $2.3{\times}2.3cm$ defective region. Using a Doppler ultrasonography, the facial artery path was traced, and using a loupe magnification, the facial artery perforator flap was elevated and the defective region was covered with the flap. Results: The flap developed early venous congestion, but it disappeared without any treatment. Six months after the surgery, the patient was satisfied with the postoperative result. Conclusion: The facial artery perforator flap has a thin pedicle. It offers a big arc of the rotation that allows free movement and one-stage operation. These strengths make the method useful for the reconstruction of the midface among other procedures.

Analysis of Tidal Flow using the Frequency Domain Finite Element Method (II) (有限要素法을 이용한 海水流動解析 (II))

  • Kwun, Soon-Kuk;Koh, Deuk-Koo;Cho, Kuk-Kwang;Kim, Joon-Hyun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.2
    • /
    • pp.73-84
    • /
    • 1992
  • The TIDE, finite element model for the simulation of tidal flow in shallow sea was tested for its applicability at the Saemangeum area. Several pre and post processors were developed to facilitate handling of the complicated and large amount of input and output data for the model developed. Also an operation scheme to run the model and the processors were established. As a result of calibration test using the observed data collected at 9 points within the region, linearlized friction coefficients were adjusted to be ranged 0.0027~0.0072, and water depths below the mean sea level at every nodes were changed to be increased generally by 1 meter. Comparisons of tidal velocities between the observed and the simulated for the 5 stations were made and obtained the result that the average relative error between simulated and observed tidal velocities was 11% for the maximum velocities and 22% for the minimum, and the absolute errors were less than 0.2m/sec. Also it was found that the average R.M.S. error between the velocities of observed and simulated was 0.119 m/sec and the average correlation coefficient was 0.70 showing close agreement. Another comparison test was done to show the result that R.M.S. error between the simulated and the observed tidal elevations at the 4 stations was 0.476m in average and the correlation coefficients were ranged 0.96~0.99. Though the simulated tidal circulation pattern in the region was well agreed with the observed, the simulated tidal velocities and elevations for specific points showed some errors with the observed. It was thought that the errors mainly due to the characteristics of TIDE Model which was developed to solve only with the linearized scheme. Finally it was concluded that, to improve the simulation results by the model, a new attempt to develop a fully nonlinear model as well as further calibration and the more reasonable generation of finite element grid would be needed.

  • PDF

LAMINAR FLOW IN THE ENTRANCE REGION OF HELICAL TUBES FOR UNIFORM INLET VELOCITY CONDITIONS (균일입구유속 조건의 나선관 입구영역의 층류 유동)

  • Kim, Y.I.;Park, J.H.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.21-27
    • /
    • 2008
  • A numerical study for laminar flow in the entrance region of helical tubes for uniform inlet velocity conditions is carried out by means of the finite volume method to investigate the effects of Reynolds number, pitch and curvature ratio on the flow development. This results cover a curvature ratio range of 1/10$\sim$1/320, a pitch range of 0.0$\sim$3.2, and a Reynolds number range of 125$\sim$2000. It has been found that the curvature ratio does significantly effect on the angle of flow development, but the pitch and Reynolds number do not. The characteristic angle $\phi_c(=\phi/\sqrt{\delta})$, or the non-dimensional length $\overline{l}(=l\sqrt{\delta}cos(atan\lambda)/d)$ can be used to represent the flow development for uniform inlet velocity conditions. In uniform inlet velocity conditions, the growth of boundary layer delays the flow development attributed to centrifugal force, and in which conditions the amplitude of flow oscillations is smaller than that in parabolic inlet velocity conditions. If the pitch increases or if the curvature ratio or Reynolds number decreases, the minimum friction factor and the fully developed average friction factor normalized with the friction factor of a straight tube and the flow oscillations decrease.

Dual Reciprocity Boundary Element Analysis for the Graetz Problem in Circular Duct (원형 덕트유동에서의 Graetz 문제에 대한 이중교환 경계요소 해석)

  • Choi, Chang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.2
    • /
    • pp.243-253
    • /
    • 1999
  • The dual reciprocity boundary element method (DRBEM) is used to solve the Graetz problem of laminar flow inside circular duct. In this method the domain integral tenn of boundary integral equation resulting from source term of governing equation is transformed into equivalent boundary-only integrals by using the radial basis interpolation function, and therefore complicate domain discretization procedure Is completely removed. Velocity profile is obtained by solving the momentum equation first and then, using this velocities as Input data, energy equation Is solved to get the temperature profile by advancing from duct entrance through the axial direction marching scheme. DRBEM solution is tested for the uniform temperature and heat flux boundary condition cases. Local Nusselt number, mixed mean temperature and temperature profile inside duct at each dimensionless axial location are obtained and compared with exact solutions for the accuracy test Solutions arc in good agreement at the entry region as well as fully developed region of circular duct, and their accuracy are verified from error analysis.

MEASUREMENT OF FLOW DISTRIBUTION IN A STRAIGHT DUCT OF RAILWAY TUNNEL MOCK-UP USING PIV AND COMPARISON WITH NUMERICAL SIMULATION (PIV 기법을 이용한 모형철도터널 직관덕트에서 유동 분포 계측 및 수치해석 결과와의 비교분석)

  • Jang, Y.J.;Jung, W.S.;Park, I.S.
    • Journal of computational fluids engineering
    • /
    • v.15 no.3
    • /
    • pp.39-45
    • /
    • 2010
  • The turbulent flows in a tunnel mock-up($10L{\times}0.5W{\times}0.25H$ m3 : scale reduction 1/20) with rectangular cross section were investigated. The instantaneous velocity fields of Re = 49,029, 89,571 were measured by the 2-D PIV system which is consisted of double pulsed Nd:Yag laser and the tracer particles in the straight-duct mock-up where the flows were fully developed. The mean velocity profiles were taken from the ensemble averages of 1,000 instantaneous velocity fields. Simultaneously, numerical simulations(RANS) were performed to compare with experimental data using STREAM code. Non-linear eddy viscosity model (NLEVM : Abe-Jang-Leschziner Eddy Viscosity Model) was employed to resolve the turbulent flows in the duct. The calculated mean velocity profiles were well compared with PIV results. In the log-law profiles, the experimental data were in good agreement with numerical simulations all the way to the wake region except the viscous sub-layer (near wall region).

A Report on Utilizing Local Food as Tourism Resource of Northern Gyong-gi Province (경기 북부지역의 관광자원으로서 향토음식에 대한 고찰)

  • 남정혜;최태호
    • The Korean Journal of Food And Nutrition
    • /
    • v.14 no.5
    • /
    • pp.479-484
    • /
    • 2001
  • Gyong-gi province has been the political, social, economical center of Korea since the three Kingdom period, Koryo, Chosun dynasty. As a result, the area enjoys abundant local food culture. However, due to the truce line going through the province, it was divided into northern and southern region. Development of the northern Gyong-gi province has been restricted because of security and defence reasons. So, even though it has kept abundant local food heritage compared to other regions. local food products have not been fully developed. Furthermore, as bed towns of Seoul and new towns are constructed in this region, traditional and local culture has been vanished gradually and the regional uniqueness is disappearing. This report focuses on identifying unique local foods of northern Gyong-gj province where tourist site development is limited and finding out how to utilize these as international tourism resource in the 21$\^$th/ century, the era of reunified Korea. Now, we need to seek ways to overcome the current difficulties and utilize the heritage of food culture and develop It in a form that suits the taste of modern consumers.

  • PDF