• Title/Summary/Keyword: Full-scale test

Search Result 1,161, Processing Time 0.027 seconds

The Evaluation of Burst Pressure for Corroded Pipeline by Full Scale Burst Test (실배관 파열시험을 통한 부식배관의 파열압력 평가)

  • Kim, Yeong-Pyo;Baek, Jong-Hyeon;Kim, U-Sik;Go, Yeong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.1
    • /
    • pp.203-210
    • /
    • 2002
  • The transmission pipeline industry spends many millions of dollars annually performing inline inspections, excavating sites of possible corrosion, and repairing or replacing damaged sections of pipe. New criteria fur evaluation of the integrity of corroded pipe have been developed in recent years to help in controlling these costs. These new criteria vary widely in their estimates of integrity and the most appropriate criterion fur a given pipeline is net always clear. This paper presents an overview, comparison and evaluation of acceptability criteria for corrosion deflects in pipelines. By full scale burst tests, this paper has assessed the relative accuracy of each of theses criteria in predicting burst pressure. Many of the criteria appear to be excessively conservative and indicate that deflects must be repaired when none is needed, based upon burst test data.

Vibrational Characteristics of Suspension Bridge by Full-Scale Test (실교 가진시험을 통한 현수교의 고유진동특성 연구)

  • Chog Sun-Kyu;Kim Sun-Kon
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.1 s.32
    • /
    • pp.12-17
    • /
    • 2006
  • The bridge to be analyzed is a self-anchored suspension bridge which is constructed within the country. Forced vibration test was performed with oscillator for verification of safety, maintenance and management. In this study, the feasibility of deduction was verified with the modified analysis model by comparing natural frequency, natural mode and damping ratio of the real bridge, which are obtained from the vibration test of the whole bridge after construction of 3-dimensional self-anchored cable suspension bridge, with the eigenvalue of analytic computation model and evaluating them. As a result of study, the friction of bridge bearing must be considered to get the natural frequencies of flexural vibration, and evaluating the polar moment of inertia is critical factor in analysis modeling in case of torsional vibration. The logarithmic damping ratio of the test appeared to exceed the ordinary one assumed at the design phase.

Study on the Performance of Waterjet Propulsion System for Patrol Boat (해안경비정 물분사 추진기의 성능시험 연구)

  • Jung, Un-Hwa;Kim, Moon-Chan;Lee, Seung-Ho;Shin, Byung-Chul;Lee, Jin-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.178-187
    • /
    • 2010
  • The performance of the waterjet system of a patrol boat has been experimentally studied. A waterjet propulsion system has many advantages comparing with a conventional screw propeller especially for high speed craft because of its good cavitation performance. This paper describes experimental procedure and analysis method of self-propulsion tests with a 1/12-scale model. Experimental results were analyzed according to ITTC 96 standard method. The full-scale effective power and delivered power of the ship were also analyzed and the full-scale speed predicted from the model test compares reasonably with the measured full-scale results of the sea trial.

Study on the Performance of Waterjet Propulsion System for 180ton class Fishing Guard Ship (180톤 어업지도선 물분사 추진기의 성능시험 연구)

  • Jung, Un-Hwa;Kim, Moon-Chan;Chun, Ho-Hwan;Lee, Seung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.46 no.2
    • /
    • pp.127-135
    • /
    • 2009
  • The performance of the waterjet system of 180 ton class fishing guard ship has been experimentally studied. A waterjet propulsion system has many advantages in comparison with a conventional screw propeller especially for high speed craft because of its good cavitation performance. Recently waterjet system has been applied to fishing boats and fishing guard ship because of avoiding a net problem although their speeds are not so high. This paper describes experimental procedure and analysis method of resistance and self-propulsion tests with a 1/14.46-scale model. Experimental results were analyzed according to ITTC 96 standard method. The full-scale effective power and delivered power of the ship were also analyzed and the full-scale speed predicted from the model test results shows a good agreement with the full-scale result from the sea trial tests.

Behavior Monitoring of Precast Concrete Panels in Lifting (프리캐스트 패널의 양중에 따른 거동 계측 연구)

  • Yang, Sung Chul;Kim, Seong Min;Han, Seung Hwan;Yoon, Sang Chun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.51-59
    • /
    • 2012
  • Through this research safety factors were analyzed for concrete precast panels in road pavement which happens in lifting, moving, and installing. Two half size of full-scale precast concrete panels were made while one full-scale precast concrete panel was made. A series of strain gages for concrete and steel were installed and measured in lifting and transporting. Measurement results indicate that in case of 60 degree of lifting, small scale panel in dynamic motion produces about 3.54 times of strain compared to the static condition. However strain measurement of full-scale concrete panel in lifting and transportation does not yield any big difference compared to the small scale panels in the static condition. From this experimental results safety of the full-scale concrete panel was attained for the lifting system adopted in this research.

A design of radiation hardened common signal processing module for sensors in NPP (내방사선 원전센서 공통 신호처리 모듈 설계)

  • Lee, Nam-ho;Hwang, Young-gwan;Kim, Jong-yeol;Lee, Seung-min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1405-1410
    • /
    • 2015
  • In this study we designed the radiation-hardened sensor signal processing modules that can be commonly used for a variety of sensors during normal operation and even in high-radiation environments caused by an accident. First development module was designed to receive the change of the R and C value from the sensors and to process the signal as a PWM modulation scheme. This module was assessed to have ± 10% error to the Full-Scale in the radiation test in the range of 12 kGy TID. The main cause of the error was analyzed as the annealing of the common circuit in the switching element and the consequent increase in the duty ratio of the pulse width modulation circuit according to the radiation dose increasement. The redesigned module for higher radiation resistivity with Stub transistor circuit was found to have less than 5% error to the Full-scale from the radiation test results for 20.7 kGy TID range.

Full Scale Structural Testing of Small Wind Turbine Composite Blade (풍력발전용 소형복합재 블레이드의 실규모 구조시험)

  • Kim, Hong-Kwan;Kim, Tae-Seong;Lee, Jang-Ho;Moon, Byung-Young;Kang, Ki-Weon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1407-1413
    • /
    • 2011
  • In this paper, the structural design for composite blade was performed and full scale structural test was conducted to verify the structural design and integrity of composite blade. Firstly, FE analysis was performed using commercial software ABAQUS under conditions of rated wind speed and Case H in IEC 61400-2. Lay-up sequence and ply thickness were designed based on FE results. And to verify the structural design, full scale structural test was conducted according to IEC 61400-2 under identical loading conditions of FE analysis. Finally, the force-deflection and local strain behavior of composite blade were evaluated.

Practical scaling method for underwater hydrodynamic model test of submarine

  • Moonesun, Mohammad;Mikhailovich, Korol Yuri;Tahvildarzade, Davood;Javadi, Mehran
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.10
    • /
    • pp.1217-1224
    • /
    • 2014
  • This paper provides a practical scaling method to solve an old problem for scaling and developing the speed and resistance of a model to full-scale submarine in fully submerged underwater test. In every experimental test in towing tank, water tunnel and wind tunnel, in the first step, the speed of a model should be scaled to the full-scale vessel (ship or submarine). In the second step, the obtained resistance of the model should be developed. For submarine, there are two modes of movement: surface and submerged mode. There is no matter in surface mode because, according to Froude's law, the ratio of speed of the model to the full-scale vessel is proportional to the square root of lengths (length of the model on the length of the vessel). This leads to a reasonable speed and is not so much for the model that is applicable in the laboratory. The main problem is in submerged mode (fully submerged) that there isn't surface wave effect and therefore, Froude's law couldn't be used. Reynold's similarity is actually impossible to implement because it leads to very high speeds of the model that is impossible in a laboratory and inside the water. According to Reynold's similarity, the ratio of speed of the model to the full-scale vessel is proportional to the ratio of the full-scale length to the model length that leads to a too high speed. This paper proves that there is no need for exact Reynold's similarity because after a special Reynolds, resistance coefficient remains constant. Therefore, there is not compulsion for high speeds of the model. For proving this finding, three groups of results are presented: two cases are based on CFD method, and one case is based on the model test in towing tank. All these three results are presented for three different shapes that can show; this finding is independent of the shapes and geometries. For CFD method, Flow Vision software has been used.

A Study on the Full Scale Structural Test of High Voltage Electric Transmission Tower (초고압 송전철탑 구조성능시험에 관한 연구)

  • 김우범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.171-180
    • /
    • 1994
  • Full scale structural test of 765kv electric transmission tower was performed to measure the stresses and displacement of towers under the design loadings, and the results were compared with analytical results based on three dimensional frame analysis. Also, the actual ultimate strength of the tower was measured through destructive test. Especially, to predict the behavior and failure of the connection of tubular member, finite element analysis was performed and compression test for the segments of tubular member were carried out. Valuable information for the overall and local behavior of the tower was obtained and reliability of current analytical method was confirmed.

  • PDF

Analysis on Reactions of Full-Scale Airframe Static Structural Test (항공기 전기체 정적구조시험의 반력 분석)

  • Shim, Jae-yeul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.3
    • /
    • pp.195-205
    • /
    • 2020
  • This study addresses analysis on reactions which are induced in restraint system for airframe full-scale static structural test. This system restraints 6 degrees of freedom of a test article. It is valuable to study evaluating test error through analysis on the reactions which include all errors in a test. It is required to calculate fistly right reactions for the evaluation. This study focuses on calculation of the right reactions. The reaction is represented by sum of nominal reaction(Rn) and testing error reactions(Rce, Rerr) and is analyzed by two steps (inital vs relative reaction) in this study. It would evaluate intrinsic error at 0%DLL and error induced from applying test load, separately. Based on analysis using test data of a full-scale static test(canard type aircraft), resultant force of Rces and Rce_rs are distributed within 82.8N while resultant force of Rerr_rs shows to increase upto max. 808N as load level increment. Such well distribution of the Rce within the small range is caused from TMF values characteristics which are well distributed within -30N~40N. Additionally, it is shown through qualitative analysis on three components(X0, Y0, Z0) of the relative reaction(Rerr_r) that the reactions must be calculated with considering deformation of test article to calculate correctly reactions. This study shows also that equations characterizing deformation of components of test article are required to calculate the correct reactions, the equations must include information which will be used to calculate movement of all loading points.