• Title/Summary/Keyword: Full-Bridge

Search Result 1,140, Processing Time 0.036 seconds

A Study on the Parallel Operation and Control Loop Design of ZVT-Full Bridge DC/DC Converter (ZVT 풀 브리지 DC/DC 컨버터의 병렬 운전 및 제어기 설계에 관한 연구)

  • Bae, Jin-Yong;Kim, Yong;Yoon, Suk-Ho;Chang, Sung-Won;Lee, Kyu-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.324-328
    • /
    • 2001
  • This paper presents parallel operation and control loop design of ZVT(Zero Voltage Transition) Full Bridge DC/DC Converter. At parallel operation of ZVT Full Bridge Converter, dynamic current shared inductor devides the same current of unit converter and ZVT circuit and aids to high efficiency in the system. Base on the modeling of ZVT. Full Bridge Converter, the control loop is designed using a simple two-pole, one-zero compensation circuit. To show the validity of the design procedures, the small signal analysis of the closed loop system and open loop system is carried out and the superiority of the dynamic characteristics is verified through the experiment with a 2kW, 50kHz prototype converter.

  • PDF

A Study on the Digital Control of a ZVS-Full Bridge Converter (ZVS-Full Bridge Converter의 디지털 제어에 관한 연구)

  • 최현식;이재학
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.35T no.3
    • /
    • pp.96-102
    • /
    • 1998
  • This paper describes the design of the digital controller for Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS). Although digital control techniques are widely used in the area of inverters and motor drives, their use for the control of high-frequency switching power supply is still rare. Therefore, this paper presents design method of digital controller of Full-Bridge Phase-shifted converter with zero-voltage switching (ZVS) and compares with conventional analog controller. The controller design is optimized by running computer simulation with the MATLAB numerical calculation package.

  • PDF

A Study of AC-DC PWM Full-Bridge Integrated Converter Topologies

  • Gerry, Moschopoulos;Praveen Jain
    • Journal of Power Electronics
    • /
    • v.1 no.2
    • /
    • pp.107-116
    • /
    • 2001
  • Two AC-DC PWM full-bridge converters that can input current to improve input power factor while performing dc-dc conversion are investigated in this paper. Both converters are simple in that they are similar to the standard PWM full-bridge converter with a diode rectifier/LC low-pass filter input, and both can operate with a simple method of PWM control. In the paper, the operation of the converters is explained and their steady-state characteristics are discussed. The feasibility of the converters and their ability to meet EN61000-3-2 Class D Standards for electrical equipment are shown with results obtained from experimental prototypes. The performance of both converters in terms of dc bus voltage level, input power factor and efficiency is compared and discussed.

  • PDF

A Study on the Speed Control System of a 3 phase Induction Motor driven by the Full Bridge Inverter with a Low Pass LC Filter (저역통과 LC필터를 가진 전브리지형 인버터로 구동되는 3상유동전동기의 속도제어 시스템에 관한 연구)

  • 박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.538-550
    • /
    • 1998
  • The variable frequency and variable voltage AC source made by a conventional inverter which is composed of power semi-conductors includes much noises in sine wave due to high frequency switching of DC source. In this paper the 3rd low pass LC filter for a variable speed 3 phase induction motor driven by a full bridge inverter is introduced to solve the EMI problem by serious noise current. The utility of a modified 3rd order Butterworth LC filter is confirmed through FFT analysis of sine waves and noiseless ACsource can be obtained by the proposed LC filter. The speed of a 3 phase induction motor driven by a full bridge inverter with a LC filter is satisfactorily controlled by a digital PID controller under the condition of stepwise load and setpoint changes.

  • PDF

Examination of Loss Characteristics of Full-Bridge Electronic Ballast for HID Lamps (HID-lamp용 Full-Bridge 전자식 안정기의 손실 특성 규명)

  • Park, Jong-Yeon;Jung, Dong-Youl;Lee, Hyoek-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2537-2540
    • /
    • 2001
  • The purpose of this study is to examine the calculated method of loss characteristics of full-bridge eletronic ballast for 250Watt HID lamps by approximated modeling. These lamps have the most emit effiency and color rendering. Especially, the majority of losses appear to the MOSFET do full-bridge, L of output terminal and driver IC, besides losses occur to the R in the ballast. These losses cause heating and breakage of MOSFET. When HID-lamp arrivals the steady-state, loss of ballast is measured 9% and analyzed value is 8% approximately. Accordingly it is not too much to say that greater part of losses is examined.

  • PDF

Fuzzy Controlled ZVS Asymmetrical PWM Full-bridge DC-DC Converter for Constant load High Power Applications

  • Marikkannan., A;Manikandan., B.V
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1235-1244
    • /
    • 2017
  • This paper proposes a fuzzy logic controlled new topology of high voltage gain zero voltage switching (ZVS) asymmetrical PWM full-bridge DC-DC boost converter for constant load and high power applications. The APWM full-bridge stage provides high voltage gain and soft-switching characteristics increase the efficiency and reduce the switching losses. Fuzzy logic controller (FLC) improves the performance and dynamic characteristics of the proposed converter. A comparison with a classical proportional-integral (PI) controller demonstrates the high performances of the proposed technique in terms of effective output voltage regulation under different operating conditions. Simulation is done by integrating two different simulation platforms $PSIM^{(R)}$ and $Matlab^{(R)}/Simulink^{(R)}$ by using SimCoupler tool of $PSIM^{(R)}$. Experimental results using 120W load have been provided to validate the results.

Phase-Shifted Full Bridge(PSFB) DC/DC Converter with a Hold-up Time Compensation Circuit for Information Technology (IT) Devices (홀드 업 타임 보상회로를 가진 IT 기기용 Front-end PSFB DC/DC 컨버터)

  • Yi, Kang-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.501-506
    • /
    • 2013
  • A hold-up time compensation circuit is proposed to get high efficiency of the front-end phase-shifted full bridge DC/DC converter. The proposed circuit can make the phase-shifted full bridge front-end DC/DC converter built with 0.5 duty ratio so that the conduction loss of the primary side and voltage stress across rectifier in the secondary side are reduced and the higher efficiency can be obtained. Furthermore, the requirement of an output filter significantly can diminish due to the perfect filtered waveform. A 12V/100A prototype has been made and experimental results are given to verify the theoretic analysis and detailed features.

Techniques to Diagnose Short-Circuit Faults in the Switching Mode Power Supply for Display (디스플레이용 스위칭모드 전원장치의 단락 고장분석 검출기법)

  • Lee, Jae-Won;Chun, Tae-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1186-1192
    • /
    • 2016
  • This paper proposes techniques to diagnose short-circuit faults of both the diodes and power FET in switching mode power supply (SMPS) by using a simple analog tester. The diodes in full-bridge rectifier, power FET, switching transformer, and some sensors are modelled with resistor. The total resistance value measured at the input terminal of a SMPS is analyzed when the short-circuit faults of diodes in a full bridge rectifier or power FET are occurred. The short-circuit faults of one or two diodes in a full bridge rectifier, power FET, and both the diodes in a full bridge rectifier and power FET can be detected by a range of total resistance, which is measured by the analog tester. Through experiments, the theoretical analysis for total resistance under short-circuit faults can be verified.

A PV-Module Integrated Phase Shift Full Bridge Converter for EV (태양광 모듈 통합 전기 자동차용 Phase Shift Full Bridge Converter)

  • Hwang, Yun-Kyung;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.425-432
    • /
    • 2020
  • The phase-shifted, full-bridge (PSFB) DC-DC converter is widely used in electric vehicles (EVs) to charge a low-voltage (12 V) battery from a high-voltage battery. A Photovoltaic (PV) module-integrated PSFB converter is proposed for the EV power conversion system. The converter is useful because solar energy can be utilized to extend the driving range. The buck converter circuit is simply realized by adding one switch to the conventional PSFB converter's secondary side. For the inductor and diode, the existing components in the PSFB converter are shared. The proposed converter can charge a low-voltage battery from the PV module with maximum power point tracking. In addition, the two power sources can be used simultaneously, and efficiency is increased by reducing the circulating current, which is a problem for the conventional PSFB converter.

Design of New Current Full-Bridge Resonant Inverter for Induction Heating System (유도가열 시스템을 위한 새로운 전류형 풀-브릿지 공진형 인버터 설계)

  • Lee, Sang-Hun;Lim, Sang-Kil;Song, Seung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.7
    • /
    • pp.59-69
    • /
    • 2012
  • There are two types of inverters that are generally used in induction heating systems: voltage type inverters and high-frequency half-bridge inverters. This paper proposes a new resonant inverter for induction heating systems using the current type full-bridge method. The proposed method can remove capacitors at the input end, and enables unity power factor operation by preventing phase differences of voltage and current. Furthermore, Zero Voltage Switching (ZVS) which is in tune with current type inverter can be adopted and continuous power adjustment is possible through duty ratio changes and frequency modulation in switching operation. Simulations and experiments showed that the proposed current type full-bridge resonant inverter could be used for unity power factor control and ZVS operation in induction heating systems.