• Title/Summary/Keyword: Full wave

Search Result 709, Processing Time 0.03 seconds

A First-principles Study on the Surface Magnetism of the CsCl Structured CoX (X = Ti, V, Nb) (001) Surface (CsCl 구조를 가지는 CoX(X = Ti, V, Nb) (001) 표면의 자성에 대한 제일원리 연구)

  • Kim, Dong-Chul
    • Journal of the Korean Magnetics Society
    • /
    • v.25 no.5
    • /
    • pp.139-143
    • /
    • 2015
  • The surface magnetism of the CsCl structured Co binary compounds, CoX (X = Ti, V, Nb) (001) surface was studied with the calculated electronic structure data obtained by the full-potential linearized augmented plane-wave (FLAPW) method. The magnetic moment of the surface Co atom of the Co-terminated CoTi(001) system was $1.19{\mu}_B$, which is enhanced compared with that of the Co atom in the center layer. The magnetic moment of the surface V atom in the V terminated the CoV(001) system was $1.64{\mu}_B$, which is more than twice of the center layered V atom. The magnetic moment of surface Co atom in the Co terminated CoV(001) system has the value of $1.34{\mu}_B$, little bit smaller than the bulk value. The magnetism was disappeared in the Co terminated CoNb(001) system, and the magnetic moment of the surface Nb atom in the Nb terminated CoNb(001) system was $0.26{\mu}_B$ which is little bit decreased compared to the center layer value.

Intracavity frequency doubling of a tunable Ti:Sapphire laser using a lithium triborate$(LiB_3O_5, LBO)$ crystal (Lithium Triborate$(LiB_3O_5, LBO)$ 결정을 이용한 파장가변 티타늄 사파이어 레이저의 내부공진기 진동수 배가)

  • 추한태;박차곤;김규욱
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.143-149
    • /
    • 2001
  • We performed the intracavity frequency-doubling of a tunable continuous-wave Ti:sapphire laser using a lithium triborate $(LiB_3O_5, LBO)$ crystal. For an efficient intracavity frequency-doubling, we measured the spectral and the angular bandwidth about the $\theta$-direction of LBO crystal. The measured values at a fundamental wavelength of 800 nm were 1.54 nm.cm and 3.8 mrad.cm, respectively. As a result of an intracavity frequency-doubling, we obtained the second-harmonic generation output power of 5.3 mW at 400 nm with the full width at half maximum(FWHM) of 0.089 nm from the fundamental output power of 185 mW at 800 nm. The frequency-doubled output was tuned from 397 nm to 403 nm.403 nm.

  • PDF

Mechanical and thermodynamic stability, structural, electronics and magnetic properties of new ternary thorium-phosphide silicides ThSixP1-x: First-principles investigation and prospects for clean nuclear energy applications

  • Siddique, Muhammad;Iqbal, Azmat;Rahman, Amin Ur;Azam, Sikander;Zada, Zeshan;Talat, Nazia
    • Nuclear Engineering and Technology
    • /
    • v.53 no.2
    • /
    • pp.592-602
    • /
    • 2021
  • Thorium compounds have attracted immense scientific and technological attention with regard to both fundamental and practical implications, owing to unique chemical and physical properties like high melting point, high density and thermal conductivity. Hereby, we investigate the mechanical and thermodynamic stability and report on the structural, electronic and magnetic properties of new silicon-doped cubic ternary thorium phosphides ThSixP1-x (x = 0, 0.25, 0.5, 0.75 and 1). The first-principles density functional theory procedure was adopted within full-potential linearized augmented plane wave (FP-LAPW) method. The exchange and correlation potential terms were treated within Generalized-Gradient-Approximation functional modified by Perdew-Burke-Ernzerrhof parameterizations. The proposed compounds showed mechanical and thermodynamic stable structure and hence can be synthesized experimentally. The calculated lattice parameters, bulk modulus, total energy, density of states, electronic band structure and spin magnetic moments of the compounds revealed considerable correlation to the Si substitution for P and the relative Si/P doping concentration. The electronic and magnetic properties of the doped compounds rendered them non-magnetic but metallic in nature. The main orbital contribution to the Fermi level arises from the hybridization of Th(6d+5f) and (Si+P)3p states. Reported results may have potential implications with regard to both fundamental point of view and technological prospects such as fuel materials for clean nuclear energy.

Analyzing the Residential Mobility Factors of Low-Income Households (저소득가구의 주거이동 요인 분석)

  • Kang, Mi;Lee, Jae Woo
    • Korea Real Estate Review
    • /
    • v.28 no.3
    • /
    • pp.79-94
    • /
    • 2018
  • This study analyzed the factors associated with residential mobility based on the data from the 11th to the 19th wave of the Korean Labor & Income Panel Study (KLIPS). After grouping low-income households within the first to the fourth income bracket into households that exhibited no income bracket change and those with income bracket changes during the research period, this study examined the effects of the income situation of each group on residential mobility. According to the results of the analysis, in the group of households that showed no low-income bracket change, significant effects were found only in the age of the head of the household, housing cost, and rental deposit (Jeonse) and monthly rental of the household. In the group of households that showed low-income bracket changes, findings were generally in line with those of the whole household, where total income and the number of full-time employees in the household were the same as those of the whole household, indicating that it would be necessary to improve the employment stability of low-income households. Based on the findings of this study, housing inequality is intensifying within low-income households, and, thus, housing policies, based on continuing surveys, must be implemented to enhance income opportunities and stabilize the housing needs of low-income households.

A first-principles theoretical investigation of the structural, electronic and magnetic properties of cubic thorium carbonitrides ThCxN(1-x)

  • Siddique, Muhammad;Rahman, Amin Ur;Iqbal, Azmat;Azam, Sikander
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1373-1380
    • /
    • 2019
  • Besides promising implications as fertile nuclear materials, thorium carbonitrides are of great interest owing to their peculiar physical and chemical properties, such as high density, high melting point, good thermal conductivity. This paper reports first-principles simulation results on the structural, electronic and magnetic properties of cubic thorium carbonitrides $ThC_xN_{(1-x)}$ (X = 0.03125, 0.0625, 0.09375, 0.125, 0.15625) employing formalism of density-functional-theory. For the simulation of physical properties, we incorporated full-potential linearized augmented plane-wave (FPLAPW) method while the exchange-correlation potential terms in Kohn-Sham Equation (KSE) are treated within Generalized-Gradient-Approximation (GGA) in conjunction with Perdew-Bruke-Ernzerhof (PBE) correction. The structural parameters were calculated by fitting total energy into the Murnaghan's equation of state. The lattice constants, bulk moduli, total energy, electronic band structure and spin magnetic moments of the compounds show dependence on the C/N concentration ratio. The electronic and magnetic properties have revealed non-magnetic but metallic character of the compounds. The main contribution to density of states at the Fermi level stems from the comparable spectral intensity of Th (6d+5f) and (C+N) 2p states. In comparison with spin magnetic moments of ThSb and ThBi calculated earlier with LDA+U approach, we observed an enhancement in the spin magnetic moments after carbon-doping into ThN monopnictide.

Big Wave in R&D in Quantum Information Technology -Quantum Technology Flagship (양자정보기술 연구개발의 거대한 물결)

  • Hwang, Y.;Baek, C.H.;Kim, T.;Huh, J.D.
    • Electronics and Telecommunications Trends
    • /
    • v.34 no.1
    • /
    • pp.75-85
    • /
    • 2019
  • Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.

A CMOS Interface Circuit for Vibrational Energy Harvesting (진동에너지 수확을 위한 CMOS 인터페이스 회로)

  • Yang, Min-jae;Yoon, Eun-jung;Yu, Chong-gun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.267-270
    • /
    • 2014
  • This paper presents a CMOS interface circuit for vibration energy harvesting. The proposed circuit consists of an AC-DC converter and a DC-DC boost converter. The AC-DC converter rectifies the AC signals from vibration devices(PZT), and the DC-DC boost converter generates a boosted and regulated output at a predefined level. A full-wave rectifier using active diodes is used as the AC-DC converter for high efficiency, and a schottky diode type DC-DC boost converter is used for a simple control circuitry. A MPPT(Maximum Power Point Tracking) control is also employed to harvest the maximum power from the PZT. The proposed circuit has been designed in a 0.35um CMOS process. The chip area is $530um{\times}325um$. Simulation results shows that the maximum efficiencies of the AC-DC converter and DC-DC boost converter are 97.7% and 89.2%, respectively. The maximum efficiency of the entire system is 87.2%.

  • PDF

Experimental investigation on effect of ion cyclotron resonance heating on density fluctuation in SOL at EAST

  • Li, Y.C.;Li, M.H.;Wang, M.;Liu, L.;Zhang, X.J.;Qin, C.M.;Wang, Y.F.;Wu, C.B.;Liu, L.N.;Xu, J.C.;Ding, B.J.;Lin, X.D.;Shan, J.F.;Liu, F.K.;Zhao, Y.P.;Zhang, T.;Gao, X.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.207-219
    • /
    • 2022
  • The suppression of high-intensity blob structures in the scrape-off layer (SOL) by ion-cyclotron range of frequencies (ICRF) power, leading to a decrease in the turbulent fluctuation level, is observed first in the Experimental Advanced Superconducting Tokamak (EAST) experiment. This suppression effect from ICRF power injection is global in the whole SOL at EAST, i.e. blob structures both in the regions that are magnetically connected to the active ICRF launcher and in the regions that are not connected to the active ICRF launcher could be suppressed by ICRF power. However, more ICRF power is required to reach the full blob structure suppression effect in the regions that are magnetically unconnected to the active launcher than in the regions that are magnetically connected to the active launcher. Studies show that a possible reason for the blob suppression could be the enhanced Er × B shear flow in the SOL, which is supported by the shaper radial gradient in the floating potential profiles sensed by the divertor probe arrays with increasing ICRF power. The local RF wave power unabsorbed by the core plasma is responsible for the modification of potential profiles in the SOL regions.

Attenuated total reflection Fourier transform infrared as a primary screening method for cancer in canine serum

  • Macotpet, Arayaporn;Pattarapanwichien, Ekkachai;Chio-Srichan, Sirinart;Daduang, Jureerut;Boonsiri, Patcharee
    • Journal of Veterinary Science
    • /
    • v.21 no.1
    • /
    • pp.16.1-16.10
    • /
    • 2020
  • Cancer is a major cause of death in dogs worldwide, and the incidence of cancer in dogs is increasing. The attenuated total reflection Fourier transform infrared spectroscopic (ATR-FTIR) technique is a powerful tool for the diagnosis of several diseases. This method enables samples to be examined directly without pre-preparation. In this study, we evaluated the diagnostic value of ATR-FTIR for the detection of cancer in dogs. Cancer-bearing dogs (n = 30) diagnosed by pathologists and clinically healthy dogs (n = 40) were enrolled in this study. Peripheral blood was collected for clinicopathological diagnosis. ATR-FTIR spectra were acquired, and principal component analysis was performed on the full wave number spectra (4,000-650 cm-1). The leave-one-out cross validation technique and partial least squares regression analysis were used to predict normal and cancer spectra. Red blood cell counts, hemoglobin levels and white blood cell counts were significantly lower in cancer-bearing dogs than in clinically healthy dogs (p < 0.01, p < 0.01 and p = 0.03, respectively). ATR-FTIR spectra showed significant differences between the clinically healthy and cancer-bearing groups. This finding demonstrates that ATR-FTIR can be applied as a screening technique to distinguish between cancer-bearing dogs and healthy dogs.

A Study of Curriculum on Vocational High School under Analysis e-Business Demand Education (e-Business Demand Education 분석에 따른 전문계고 Curriculum 연구)

  • An, Jae-Min;Park, Dea-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.8
    • /
    • pp.73-80
    • /
    • 2009
  • It is difficult that expertise human supply and demand for industry requires by imbalance of industry necessity human and profession organs of education's Skill Mismatch. Industry can prove productivity though reeducate school graduation person in spot and master correct technology in industry special quality. This paper is research that accommodate Demand Education that industry requires and make out full text caution Curriculum Specializing Vocational High School in e-Business field. Analysis e-Business industrial classification and occupational classification. Analysis knowledge and technological level that require in industry about e-Business education and investigate and analyze the demand. Base industry, Support industry, Apply e-Business Curriculum that is examined by practical use industry to learning, Do to estimate satisfaction about Demand Education Curriculum of industry and confirm Success special quality with research and investigation and application wave. Suggested for e-Business Curriculum's basis model in this paper and school subject Curriculum. Wish to contribute in nation development through productivity elevation through e-Business education of industry request.