• Title/Summary/Keyword: Full scale test

Search Result 1,159, Processing Time 0.027 seconds

A Study on Calculation of Test Load for Full-Scale Airframe Structural Test of Composite Aircraft (복합재 항공기 전기체 구조시험 시험하중 산출 방법 연구)

  • Choi, Ik-Hyeon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 2011
  • Some methods of calculation of test load value from design load data were investigated which will be applied at strap installed full-scale airframe of composite aircraft. These methods were applied to left wing of KC-100 composite aircraft and the calculated test load values were compared with each others. Generally since test load values are differently calculated according to each aircraft type and position of straps, all calculation methods mentioned at this study need to be applied and compared to each aircraft. Finally the most appropriate method needs to be selected.

과하중 방지기의 전기체 구조시험 적용에 관한 연구

  • Kim, Sung-Chan;Chae, Dong-Chul;Kim, Sung-Jun;Hwang, In-Hee
    • Aerospace Engineering and Technology
    • /
    • v.2 no.2
    • /
    • pp.11-17
    • /
    • 2003
  • This paper present a method of meter-out flow control for overload protection valve in full-scale airframe test. Emergency stop, which results in dump state, can be happened during full-scale airframe test by several causes. Because servo valve can't control hydraulics actuator in the dump state, pressure in cylinder chamber may rise abruptly and overload can be acted to the test article. In this paper, the procedure and technology of orifice setting are investigated to protect the test article from unexpected loads by dump. The test results show that the presented methods decrease peak loads and improve unloading characteristics of hydraulic actuators in the dump state.

  • PDF

Laboratory Performance Evaluation of Alternative Dowel Bar for Jointed Concrete Pavements (콘크리트 포장용 고내구성 대체 다웰바의 실내공용성 평가)

  • Park, Seong Tae;Park, Jun Young;Lee, Jae Hoon;Kim, Hyung Bae
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.23-36
    • /
    • 2013
  • PURPOSES: The problem under this circumstance is that the erosion not only drops strength of the steel dowel bar but also comes with volume expansion of the steel dowel bar which can reduce load transferring efficiency of the steel dowel bar. To avoid this erosion problem, alternative dowers bars are developed. METHODS: In this study, the bearing stresses between the FRP tube dowel bar and concrete slab are calculated and compared with its allowable bearing stress to check its structural stability in the concrete pavement. These comparisons are conducted with several cross-sections of FRP tube dowel bars. Comprehensive laboratory tests including the shear load-deflection test on a full-scale specimen and the full-scale accelerated joint concrete pavement test are conducted and the results were compared with those from the steel dowel bar. RESULTS: In all cross-sections of FRP tube dowel bars, computed bearing stresses between the FRP tube dowel bar and concrete slab are less than their allowable stress levels. The pultrusion FRP-tube dowel bar show better performance on direct shear tests on full-scale specimen and static compression tests at full-scale concrete pavement joints than prepreg and filament-winding FRP-tube dowel bar. CONCLUSIONS: The FRP tube dowel bars as alternative dowel bar are invulnerable to erosion that may be caused by moisture from masonry joint or bottom of the pavement system. Also, the pultrusion FRP-tube dowel bar performed very well on the laboratory evaluation.

A study on the effect of flat plate friction resistance on speed performance prediction of full scale

  • Park, Dong-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.195-211
    • /
    • 2015
  • Flat plate friction lines have been used in the process to estimate speed performance of full-scale ships in model tests. The results of the previous studies showed considerable differences in determining form factors depending on changes in plate friction lines and Reynolds numbers. These differences had a great influence on estimation of speed performance of full-scale ships. This study was conducted in two parts. In the first part, the scale effect of the form factor depending on change in the Reynolds number was studied based on CFD, in connection with three kinds of friction resistance curves: the ITTC-1957, the curve proposed by Grigson (1993; 1996), and the curve developed by Katsui et al. (2005). In the second part, change in the form factor by three kinds of friction resistance curves was investtigated based on model tests, and then the brake power and the revolution that were finally determined by expansion processes of full-scale ships. When three kinds of friction resistance curves were applied to each kind of ships, these were investigated: differences between resistance and self-propulsion components induced in the expansion processes of full-scale ships, correlation of effects between these components, and tendency of each kind of ships. Finally, what friction resistance curve was well consistent with results of test operation was examined per each kind of ships.

Development of the Scale Track to Test Bogie Steering Performance (대차 조향 특성 시험을 위한 축소 트랙 개발)

  • Hur, Hyun-Moo;Park, Jun-Hyuk;You, Won-Hee;Park, Tae-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.301-305
    • /
    • 2007
  • The performance of the railway bogie is classified into the stability and the steering performance. Testing for the bogie stability is conducted on the roller rig. But testing for the bogie steering performance on test facility is very difficult, so the testing for the vehicle curving performance is conducted on the real curve track. And it is desirable to test on the full scale test rig, but it caused many problems relating to test costs, test time. To overcome these problems, the small scale test rig is actively used in the field of bogie stability. Thus, in this paper, we have studied the scale track to test the bogie steering performance. For this, we designed the 1/5 scale test track equivalent to radius 200 curve and confirmed the validity of the testing for the bogie steering performance on the scale curve track through the testing using 1/5 scale bogie.

  • PDF

Shaking Table Test of Full Scale Parapet Models for the Evaluation of Intensities of Historical Earthquakes (성첩 모델의 진동대 실험과 역사지진의 세기 평가)

  • 김재관
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.461-467
    • /
    • 2001
  • Shaking table tests were performed with full scale models of stone parapet on the ancient rampart. The objectives of these tests are to study the seismic behavior of the parapet and to obtain quantitative estimation of the intensities of historical earthquakes. Two test models were made based on the structure of the parapet remnant of a mountain fortress in Bukhan-San located in Seoul. Two types of infilling material are considered. The responses to models were tested subjected to three kinds of input motion.

  • PDF

A Experimental Study on Combustion-Stability Rating in a Subscale Chamber (모형 연소실에서 분사기 연소 안정성 평가에 관한 실험적 연구)

  • Kim, Chuljin;Sohn, Chae Hoon
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.77-78
    • /
    • 2012
  • To predict combustion instability in actual full-scale combustion chamber of rocket engines, air-injection test is proposed with scaling techniques. From the data, damping factors have been obtained as a function of hydraulic parameter and the data give us instability map. Two instability regions are presented and it is found that they coincide reasonably with them from hot-fire test with full-scale flow rates. Accordingly, the proposed approach can be applied cost-effectively to stability rating of jet injectors when mixing of fuel and oxidizer jets is the dominant process in instability triggering.

  • PDF

Full-scale testing and modeling of the mechanical behavior of shield TBM tunnel joints

  • Ding, Wen-Qi;Peng, Yi-Cheng;Yan, Zhi-Guo;Shen, Bi-Wei;Zhu, He-Hua;Wei, Xin-Xin
    • Structural Engineering and Mechanics
    • /
    • v.45 no.3
    • /
    • pp.337-354
    • /
    • 2013
  • For shield TBM (Tunnel Boring Machine) tunnel lining, the segment joint is the most critical component for determining the mechanical response of the complete lining ring. To investigate the mechanical behavior of the segment joint in a water conveyance tunnel, which is different from the vehicle tunnel because of the external loads and the high internal water pressure during the tunnel's service life, full-scale joint tests were conducted. The main advantage of the joint tests over previous ones was the definiteness of the loads applied to the joints using a unique testing facility and the acquisition of the mechanical behavior of actual joints. Furthermore, based on the test results and the theoretical analysis, a mechanical model of segment joints has been proposed, which consists of all important influencing factors, including the elastic-plastic behavior of concrete, the pre-tightening force of the bolts and the deformations of all joint components, i.e., concrete blocks, bolts and cast iron panels. Finally, the proposed mechanical model of segment joints has been verified by the aforementioned full-scale joint tests.

Development of an insulation performance measurement unit for full-scale LNG cargo containment system using heat flow meter method

  • Lee, Jin-sung;Kim, Kyung-su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.4
    • /
    • pp.458-467
    • /
    • 2018
  • Efforts have been made in this paper to develop the measuring device for the insulation performance of full scale NO96 LNG CCS. The facility was designed to maintain environmental conditions which are similar to operation conditions of full scale LNG CCS. In the facility, the heat sink boundary was kept cryogenic temperature by cold chamber which contains liquefied nitrogen and heat source boundary was made by external case heated by natural convection. Heat Flow Meter method (HFM) was applied to this facility, hence Heat Flux Sensors (HFS) were attached to specimen. The equivalent thermal conductivity of full scale NO96 unit box was targeted to measure and PUF of same size was used for the calibration test. Additionally, the finite element analysis was carried out to check the performance of the developed test facility and experimental results were also compared with those predicted by the numerical method.

Design of the Full-Scale Fire Safety Evaluation Facility for Railroad Vehicle Fire (철도차량 실대형 화재안전 성능평가 장치 설계)

  • Yoo, Yong-Ho;Kim, Heung-Youl
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.222-225
    • /
    • 2008
  • To prove a lot of technical difficulties related to the safety management of a railroad fire effectively, we design for the full-scale fire test facility of the railroad vehicle. It will be consist of major 3 part - duct system with smoke cleaning system, measuring section and gas analysis system. The CFD simulation was also carried out to design of the hood and duct system optimization. The results will be help for basic research of the railroad fire safety.

  • PDF