• Title/Summary/Keyword: Full discharge

Search Result 193, Processing Time 0.039 seconds

A Study on the Display Discharge Characteristics of PDP for the HDTV (HDIV를 위한 PDP의 표시방전특성에 관한 연구)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.39-46
    • /
    • 2005
  • This research concerns the ADS drive method of 3 electrodes AC PDP and is determined the minimum pulse width of the address and the sustain, which the steady sustain discharge without decreasing luminance can be obtained. From the experimental result, if the address pulse width became $1.5[{\mu}s]$ or more a effective address discharge with the operating margin of 35[V] was possible. And if the sustain pulses width became $2[{\mu}s]$ or more, a steady sustain discharge with the operation margin of 25[V] was possible. When this condition is applied to Full-HDTV class PDP with the in lines of horizontal scanning lines, 8 sub-fields and total 1420 sustain pulses can be used.

Full Size PDP Development with SDR Structure for Improved Luminance and Low Power Consumption

  • Yoo, Min-Sun;Yoon, Cha-Keun;Lee, Kwang-Sik;Whang, Ki-Woong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.53-56
    • /
    • 2002
  • Samsung's newly developed high luminance efficiency 42" VGA plasma display panel is introduced. A new discharge cell structure, SDR (Segmented electrode in Delta color arrayed Rectangular subpixel) has been applied to a full size panel for the first time. In this paper, we describe how this new discharge cell structure for high efficiency is integrated to an energy saving plasma display with better picture quality.

  • PDF

Examination on Fire Extinguishing Performance of Full Cone and Hollow Cone Twin-fluid Atomizers: Effects of Supply Gas and Water Mist (중실원추형 및 중공원추형 2유체 미립화기의 화재 소화 성능 검토: 공급 기체와 미분무 영향)

  • Kim, Dong Hwan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.33 no.5
    • /
    • pp.28-36
    • /
    • 2019
  • In the present study, the effects of supply gas and water mist on the heptane pool fire extinguishing performance were investigated using the full cone and hollow cone twin-fluid atomizers. Air or nitrogen of 30 lpm (Liter per minute; L/min) was used as the supply gas, and the experiments were conducted under the water flow rate conditions of 0 lpm (i.e., discharge of air or nitrogen only) and 0.085 lpm (i.e., discharge of water mist with supply gas). Experimental results confirmed that the use of water mist discharge with the supply gas and full cone spray pattern reduced the fire extinguishing time as compared to that of only supply gas discharge and hollow cone spray pattern. In addition, for the discharge of water mist using the full cone twin-fluid atomizer, water mist significantly affected fire extinguishing performance, whereas the effect of the supply gas was less pronounced. On the other hand, for the discharge of water mist using the hollow cone twin-fluid atomizer, the fire extinguishing time was remarkably reduced by the supply of nitrogen, as compared with that of air, indicating that the supply gas as well as water mist can significantly affect fire extinguishing performance.

Studies on High Speed Addressing Driving Scheme using the Priming Effect in Plasma Display Panel (하전 입자 효과를 이용한 Plasma Display Panel의 고속 구동 파형에 관한 연구)

  • Shin, Bhum-Jae;Park, Sang-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.45-52
    • /
    • 2009
  • This study is related to the realization of high speed address driving method for Full-HD PDP. The new self-priming addressing(SPA) driving scheme was proposed to improve an address discharge time lag, which utilizes the priming effect maintaining the priming discharge during an address period. In this study, the basic characteristics of the priming ramp discharge were investigated and optimize the reset pulse and priming pulse. It is noted that the address discharge time lag is significantly improved from 1.2[${\mu}s$] to 0.8[${\mu}s$] when the slope of the priming ramp pulse is below 0.1[$V/{\mu}s$].

Discharge Characteristics of Narrow Width Pulse Addressing for the High-Speed Driving of Plasma Display Panels (플라즈마 디스플레이 패널의 고속 구동을 위한 세폭 펄스 어드레스 방전특성)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.7
    • /
    • pp.13-19
    • /
    • 2007
  • This study relates to a new high-speed drive method for the full-HD PDP with 1080 horizontal scanning lines. The characteristics of the new drive method is evaluated considering the characteristics of the display discharge by the high-speed addressing. In this drive method, if the width of the address pulse narrows, the relati0[V]e discharge strength and the discharge time lag of the first display discharge are received the influence of it. Though the change in the applied position of the address pulse is unrelated to the discharge strength, it influences at the discharge time lag. However, the stable display discharges can be induced regardless of the address pulse position and width if the address pulse position is within [$6{\mu}s$] and the width is up to [$0.7{\mu}s$]. From the experiments, it has been understood that the high-speed drive technique with the address pulse of narrow width is sensitively influenced by the space charge because of the insufficiency of wall charge.

A Novel Battery Charge/Discharge System with Zero Voltage Discharge Function (영전압 방전 기능을 갖는 새로운 배터리 충방전시스템)

  • Nguyen, Quang Manh;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.169-170
    • /
    • 2013
  • One important test for formation and grading of the lithium-ion battery is to confirm the performance of the battery while discharging battery down to zero volts. In this paper, a novel charge/discharge converter with zero-voltage discharge function is proposed. The proposed converter is able to discharge the battery until the voltage reaches to zero volts. The phase-shifted full bridge method is used to charge the battery and the current-fed push-pull method with bidirectional switches is used for the discharge. The ZVS turn-on is achieved in the charge operation and the ZVS turn-off in the discharge operation. The performance of the system is verified by the experiments using lithium-ion batteries.

  • PDF

Novel Priming Discharge Overtopping with Display Period Technique for the Plasma Display Panels (플라즈마 디스플레이 패널의 새로운 표시기간 중첩 프라이밍 방전 기술)

  • Ryeom, Jeong-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.8
    • /
    • pp.27-33
    • /
    • 2007
  • A novel priming discharge technique in which the ramp shaped priming pulse is superposed on the sustain period so that the entire plasma display panel (PDP) is discharged at the same time with a single drive circuit is proposed. From the experimental results, it is ascertained that the priming discharge is ignited only in a pixel in which sustain discharge does not occur and it has been understood that the priming pulse hardly influences the sustain discharge. Moreover, high-speed driving with address pulse widths of 0.7[${\mu}s$] was achieved and a wide address voltage margin of 40[V] was obtained by using the drive method applied the proposed priming discharge technique. In these results, full-HDTV PDP with 1080 horizontal scanning lines can be driven without decreasing the brightness and the possibility of the commercializing is also high because this technology is designed for using the commercialized driver IC.

Performance Improvement and Validation of Advanced Safety Injection Tanks (신형안전주입탱크의 성능개선 및 검증)

  • Youn, Young Jung;Chu, In-Cheol;Kwon, Tae-Soon;Song, Chul-Hwa
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Advanced SITs of the evolutionary PWRs have the advantage that they can passively control the ECC water discharge flow rate. Thus, the LPSI pumps can be eliminated from the safety injection system owing to the benefit of the advanced SITs. In the present study, a passive sealing plate was designed in order to overcome the shortcoming of the advanced SITs, i.e., the early nitrogen discharge through the stand pipe. The operating principle of the sealing plate depends only on the natural phenomena of buoyancy and gravity. The performance of the sealing plate was evaluated using the VAPER test facility, equipped with a full-scale SIT. It was verified that the passive sealing plate effectively prevented the air discharge during the entire duration of the ECC water discharge. Also, the major performance parameters of the advanced SIT were not changed with the installation of the sealing plate.

Expeditious Full Discharging Method without Voltage Rebound Issue for Safe Battery Recycling

  • Ji-Su Woo;Hong-Geun Lee;Geun-Ha Hwang;Keun-Ho Heo;Yu-Chan Hwang;Won-Jin Kwak
    • Journal of Electrochemical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.459-465
    • /
    • 2024
  • To achieve recycling without safety hazards by explosion of spent batteries, an efficient full discharging procedure is required to stabilize the batteries before recycling. However, typical salt solution discharging technique has environmental pollution, inefficiency, and safety issues due to wastewater emission, slow discharging rate, and severe voltage rebound. Electrical discharging techniques can be applied to overcome these problems, but the typical constant-current and constantcurrent constant-voltage modes have a trade-off relationship between discharge time and voltage rebound. In this study, we propose reverse voltage mode as an expeditious and safe electrical discharging protocol that effectively addresses the tradeoff between discharging time and voltage rebound. The proposed reverse voltage mode for full discharging method was proven to be effective regardless of the electrode crystal structure or the battery form factor. This result is expected to present new methodology for pre-stabilization of spent batteries for more eco-friendly and stable recycling.